High-resolution satellite precipitation products (SPPs) provide forcing inputs for hydrologic applications.Complex mountain terrains have a significant effect on the occurrence and intensity of precipitation.In this study, ground-based observations were adopted as the benchmark to evaluate accuracy and precipitation detection capability of three SPPs (bias-corrected Climate Prediction Center morphing method, CMORPH CRT; Tropical Rainfall Measuring Mission, TRMM 3B42V7; and Integrated Multi-satellite Retrievals for Global Precipitation Measure, GPM IMERG) was validated by 104 rain gauges from 1 January 2016 to 31 December 2017 in different time scales (1 h, 3 h, 6 h, 12 h and 24 h) based on different precipitation intensity (light rain, moderate rain, heavy rain, very heavy rain and extreme rain) over the Taihang Mountains.Eight statistical metrics were utilized to quantitative analysis in this research.These indices include Correlation Coefficient (R), Root Mean Square Error (RMSE), Bias ratio (β), Variability ratio (γ), Kling-Gupta efficiency (KGE'), Probability of Detection (POD), False Alarm Ratio (FAR) and Critical Success Index (CSI).Results show that: (1) The accuracy performance of each SPP gradually stabilizes after the precipitation accumulate to 3 h, and the KGE' basically remains unchanged after 3 h time scale.In terms of the precipitation detection performance of SPPs, POD of three SPPs increase with the accumulation of precipitation time (POD range from 0.5 to 0.8), and FAR of CRT and 3B42 products decrease with the accumulation of precipitation time (FAR range from 0.5 to 0.75).(2) In terms of the accuracy analysis of different precipitation intensity ranges, there is a weak correlation between precipitation observations by SPPs and precipitation observations on the ground (R<0.4).RMSE increase with the increase of precipitation intensity for all SPPs, POD of all SPPs decrease with the increase of precipitation intensity over the Taihang Mountains, ranging from 0.4 to 0.65, and FAR of all SPPs increases with the increase of precipitation intensity, ranging from 0.6 to 0.85.(3) In terms of Probability density distribution (PDF), IMERG product underestimates the rain event of P<0.1 mm in all time scales.To varying degree, IMERG product overestimates the rain event of P≥0.1 mm over the Taihang Mountain.CRT product shows an overestimation of heavy rain and very heavy rain events at 1 h, 6 h, 12 h and 24 h.The PDF of 3B42 product in different precipitation intensity ranges are closer to the actual observed precipitation on the ground in study areas, but the observation of moderate rain events is underestimated by this product in all time scales.Our results not only demonstrate the superiority of different products at different time scales and precipitation intensity ranges, but also provide suggestions for further improvement of the SPPs especially for complex terrains.
[1]Bharti V, Singh C, 2015.Evaluation of error in TRMM 3B42V7 precipitation estimates over the Himalayan region[J].Journal of Geophysical Research: Atmospheres, 120(24): 12458-12473.DOI: 10.1002/2015JD023779.
[2]Chen S, Liu H J, You Y L, al et, 2014.Evaluation of high-resolution precipitation estimates from satellite during July 2012 Beijing flood event using dense rain gauge observations[J].PloS ONE, 9(4): e89681.DOI: 10.1371/journal.pone.0089681.
[3]Ebert E E, Janowiak J E, Kidd C, 2007.Comparison of near-real-time precipitation estimates from satellite observations and numerical models[J].Bulletin of the American Meteorological Society, 88(1): 47-64.DOI: 10.1175/bams-88-1-47.
[4]Fu T G, Han L P, Gao H, al et, 2018a.Pedodiversity and its controlling factors in mountain regions-a case study of Taihang Mountain, China[J].Geoderma, 310: 230-237.DOI: 10.1016/j.geoderma.2017.09.027.
[5]Fu T G, Han L P, Gao H, al et, 2018b.Geostatistical analysis of pedodiversity in Taihang Mountain region in North China[J].Geoderma, 328: 91-99.DOI: 10.1016/j.geoderma.2018.05.010.
[6]Gao Y C, Liu M F, 2013.Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau[J].Hydrology and Earth System Science, 17(2): 837-849.DOI: 10.5194/hess-17-837-2013.
[7]Huffman G J, Adler R F, Bolvin D T, al et, 2007.The TRMM multi-satellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimate at fine scales[J].Journal of Hydrometeorology, 8(1): 38-55.DOI: 10.1007/978-90-481-2915-7_1.
[8]Joyce R J, Janowiak J E, Arkin P A, al et, 2004.CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J].Journal of Hydrometeorology, 5(3): 487-503.DOI: 10. 1175/1525-7541(2004)005<0487: CAMTPG>2.0.CO; 2.
[9]Karl T R, Knight R W, Plummer N, 1995.Trends in high-frequency climate variability in the twentieth century[J].Nature, 377(6546): 217-220.DOI: 10.1038/377217a0.
[10]Kirstetter P E, Hong Y, Gourley J J, al et, 2013.Comparison of TRMM 2A25 products, version 6 and version 7, with NOAA/NSSL ground radar–based national mosaic QPE[J].Journal of Hydrometeorology, 14(2): 661-669.DOI: 10.1175/JHM-D-12-030.1.
[11]Kling H, Fuchs M, Paulin M, 2012.Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios[J].Journal of Hydrology, 424: 264-277.DOI: 10.1016/j.jhydrol. 2012.01.011.
[12]Plummer N, Salinger M J, Nicholls N, al et, 1999.Changes in climate extremes over the Australian region and New Zealand during the twentieth century[J].Climatic Change, 42(1): 183-202.DOI: 10.1023/A: 1005472418209.
[13]Sharifi E, Steinacker R, Saghafian B, 2018.Multi times-scale evaluation of high-resolution satellite-based precipitation products over northeast of Austria[J].Atmospheric Research, 206: 46-63.DOI: 10.1016/j.atmosres.2018.02.020.
[14]Suppiah R, Hennessy K J, 1998.Trends in total rainfall, heavy rain events and number of dry days in Australia 1910 -1990[J].International Journal of Climatology, 18(10): 1141-1164.DOI: 10. 1002/(SICI)1097-0088(199808)18: 10<1141: AID-JOC286>3.0.CO; 2-P.
[15]Tan M L, Santo H, 2018.Comparison of GPM IMERG, TMPA 3B42, and PERSIANN-CDR satellite precipitation products over Malaysia[J].Atmospheric Research, 202: 63-76.DOI: 10. 1016/j.atmosres.2017.11.006.
[16]Tong K, Su F G, Yang D Q, al et, 2014.Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals[J].International Journal of Climatology, 34(2): 265-285.DOI: 10.1002/joc.3682.
[17]Wang C G, Tang G Q, Han Z Y, al et, 2018.Global intercomparison and regional evaluation of GPM IMERG version-03, version-04 and its latest version-05 precipitation products: Similarity, difference and improvements[J].Journal of Hydrology, 564: 342-356.DOI: 10.1016/j.jhydrol.2018.06.064.
[18]Xu R, Tian F Q, Yang L, al et, 2017.Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network[J].Journal of Geophysical Research: Atmospheres, 122(2): 1-15.DOI: 10.1002/2016JD025418.
[19]Zambrano-Bigiarini M, Nauditt A, Birkel C, al et, 2017.Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile[J].Hydrology and Earth System Sciences, 21(2): 1295-1320.DOI: 10.5194/hess-21-1295-2017.
[20]刘江涛, 徐宗学, 赵焕, 等, 2019.不同降水卫星数据反演降水量精度评价-以雅鲁藏布江流域为例[J].高原气象, 38(2): 386-396.DOI: 10.7522/j.issn.1000-0534.2018.00092.
[21]潘欣, 尹义星, 王小军, 2019.1960-2014年淮河流域极端降水发生时间的时空特征[J].高原气象, 38(2): 377-385.DOI: 10. 7522/j.issn.1000-0534.2018.00076.
[22]任英杰, 雍斌, 鹿德凯, 等, 2019.全球降水计划多卫星降水联合反演IMERG卫星降水产品在中国大陆地区的多尺度精度评估[J].湖泊科学, 31 (2): 560-672.DOI: 10.11821/dlxb201907003.
[23]沈艳, 潘旸, 宇婧婧, 等, 2013.中国区域小时降水量融合产品的质量评估[J].大气科学学报, 36 (1): 37-46.DOI: 10.3969/j.issn.1674-7097.2013.01.005.
[24]唐国强, 万玮, 曾子悦, 等, 2015.全球降水测量(GPM)计划及其最新进展综述[J].遥感技术与应用, 30 (4): 607-615.DOI: 10. 11873/j.issn.1004-0323.2015.4.0607.
[25]王存光, 洪阳, 2018.卫星遥感降水的反演、 验证与应用综述[J].水利水电技术, 48 (8): 1-9.DOI: 1000-0860(2018)08-0001-09.
[26]王丛梅, 俞小鼎, 李芷霞, 等, 2107.太行山地形影响下的极端短时强降水分析[J].气象, 43 (4): 423-433.DOI: 10.7519/j.issn. 1000-0526.2017.04.004.
[27]王思梦, 王大钊, 黄昌, 2018.GPM卫星降水数据在黑河流域的适用性评价[J].自然资源学报, 33(10): 1847-1860.DOI: 10.31497/zrzyxb.20171180.
[28]肖柳斯, 张阿思, 闵超, 等, 2019.GPM卫星降水产品在台风极端降水过程的误差评估[J].高原气象, 38(5): 993-1003.DOI: 10. 7522/j.issn.1000-0534.2018.00143.
[29]中华人民共和国国家标准, 2012.GB/T 28592-2012 降水量等级[S].北京: 中国标准出版社.
[30]曾岁康, 雍斌, 2019.全球降水计划IMERG和GSMaP反演降水在四川地区的精度评估[J].地理学报, 74 (7): 1305-1318.DOI: 10.11821/dlxb201907003.
[31]张伟, 李爱农, 江晓波, 2013.基于DEM的中国山地空间范围定量界定[J].地理与地理信息科学, 29(5): 58-63.DOI: 10.7702/dlydlxxke20130513.