Characteristics of Solar Spectral Radiation and Long Wave Radiation over the Evergreen Broad-leaved Forest in the South of the Five Ridges

  • Huan WANG ,
  • Zhigang WEI ,
  • Xian ZHU ,
  • Chenghai WANG ,
  • Wenjie DONG
Expand
  • <sup>1.</sup>State Key Laboratory of Earth Surface Processes and Resource Ecology,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China;<sup>2.</sup>School of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,Gansu,China;<sup>3.</sup>School of Atmospheric Sciences,Sun Yat-Sen University,Guangzhou 510275,Guangdong,China

Received date: 2019-07-10

  Online published: 2020-10-28

Abstract

By using the radiation observation data from October 2015 to May 2018 at Zhuhai Phoenix Mountain land-air interaction and carbon flux observation tower which represents the typical secondary evergreen broad-leaf forest underlying surface around cities and villages in the South of the Five Ridges of China, statistical analysis were carried out on the characteristics of total and spectral solar radiation, long-wave radiation and net radiation.The results show that the diurnal variations of total and spectral solar radiation are the regular sinusoidal curves with highest values at noon in the typical clear days while the diurnal variations are serrated in the cloudy days.In the typical clear days, the upward long-wave radiations increase first and then decrease during the daytime and generally reach the maximum after noon, the downward long-wave radiations do not change obviously during the day, but often change violently at night.In the cloudy days, the downward long-wave radiations emitted by atmosphere are very close to the upward long wave radiations emitted by the underlying surface, but the diurnal variations of both are very small.The net radiations are positive during the daytime but negative at night.Their diurnal variations are similar to the ones of the downward total solar radiations during the daytime and similar to the ones of the upward long-wave radiations at night.The solar radiations and long-wave radiations are the largest in summer, followed by autumn and spring, and the smallest in winter.The average ratios of the near infrared radiation, visible radiation and ultraviolet radiation to total radiation are 51.2%, 43.0% and 5.8% respectively during the observation period.The ratios of the visible and ultraviolet radiation to total radiation are both the largest in summer and the smallest in winter, while the ratio of near infrared radiation to total radiation is the smallest in summer and the largest in winter.These results can provide a basis for the improvement of land surface process model in the South of the Five Ridges.

Cite this article

Huan WANG , Zhigang WEI , Xian ZHU , Chenghai WANG , Wenjie DONG . Characteristics of Solar Spectral Radiation and Long Wave Radiation over the Evergreen Broad-leaved Forest in the South of the Five Ridges[J]. Plateau Meteorology, 2020 , 39(5) : 1033 -1044 . DOI: 10.7522/j.issn.1000-0534.2019.00090

References

[1]Bi X Y, Gao Z Q, Deng X J, al et, 2007.Seasonal and diurnal variations in moisture, heat and fluxes over grassland in the tropical monsoon region of southern China [J].Journal of Geophysical Research: Atmospheres, 112 (D10): D10106.
[2]Cao M K, Prince D S, Tao B, al et, 2005.Regional pattern and interannual variations in global terrestrial carbon uptake in response to changes in climate and atmospheric CO<sub>2</sub>[J].Tellus Series B-Chemical and Physical Meteorology, 57(3): 210-217.
[3]Chen S, Chen J, Lin G, al et, 2009.Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types[J].Agricultural and Forest Meteorology, 149(11): 0-1809.
[4]Ding Z W, Wen Z P, Wu R G, al et, 2013.Surface energy balance measurements of a banana plantation in South China [J].Theoretical and Applied Climatology, 114 (1/2): 349–363.
[5]Moore C J, 1976.A comparative study of radiation balance above forest and grassland[J].Quarterly Journal of the Royal Meteorological Society, 102(434): 889-899.
[6]Stanhill G, Hofstede G J, Kalma J D, 2010.Radiation balance of natural and agricultural vegetation[J].Quarterly Journal of the Royal Meteorological Society, 92(391): 128-140.
[7]Zheng Z, Dong W, Li Z, al et, 2015.Observational study of surface spectral radiation and corresponding albedo over Gobi, desert, and bare loess surfaces in northwestern China[J].Journal of Geophysical Research: Atmospheres, 120(3): 883-896.
[8]陈辰, 韦志刚, 董文杰, 等, 2018.珠海凤凰山陆气相互作用观测塔通量数据的质量控制与评价[J].热带气象学报, 34(4): 561-569.
[9]陈世强, 吕世华, 奥银焕, 等, 2008.夏季不同天气背景条件下黑河中游不同下垫面的辐射特征[J].中国沙漠, 28(3): 514-518.
[10]陈世强, 文莉娟, 吕世华, 等, 2006.金塔绿洲不同下垫面辐射特征对比分析[J].太阳能学报, 27(7): 713-718.
[11]陈星, 余晔, 陈晋北, 等, 2016.黄土高原半干旱区雨养农田地表辐射和能量通量的季节变化[J].高原气象, 35(2): 351-362.DOI: 10.7522/j.issn.1000-0534.2015.00004.
[12]邓雪娇, 吴兑, 游积平, 2003.广州市地面太阳紫外线辐射观测和初步分析[J].热带气象学报, 19(增刊1): 118-125.
[13]巩远发, 段廷扬, 陈隆勋, 等, 2005.1997/1998年青藏高原西部地区辐射平衡各分量变化特征[J].气象学报, 63(2): 225-235.
[14]谷星月, 马耀明, 马伟强, 等, 2018.青藏高原地表辐射通量的气候特征分析[J].高原气象, 37(6): 1458-1469.DOI: 10.7522/j.issn.1000-0534.2018.00051.
[15]何清, 缪启龙, 李帅, 等, 2009.塔克拉玛干沙漠腹地的长波辐射变化特征[J].高原气象, 28(3): 642-646.
[16]季国良, 邹基玲, 1994.干旱地区绿洲和沙漠辐射收支的季节变化[J].高原气象, 13(3): 323-329.
[17]金莉莉, 何清, 等, 2014.塔克拉玛干沙漠腹地辐射平衡和反照率变化特征[J].中国沙漠, 34(1): 215-224.
[18]李振朝, 韦志刚, 文军, 等, 2009.黄土高原典型塬区冬小麦田地表辐射平衡各分量特征分析[J].太阳能学报, 30(1): 12-18.
[19]刘伟, 魏信, 石文, 等, 2016.复杂地形条件下零平面位移和空气动力学粗糙度的计算——以珠海南亚热带常绿阔叶林地区为例[J].热带气象学报, 32(4): 524-532.
[20]马英赛, 孟宪红, 韩博, 等, 2019.黄土高原土壤湿度对地表能量和大气边界层影响的观测研究[J].高原气象, 38(4): 705-715.DOI: 10.7522/j.issn.1000-0534.2019.00036.
[21]钱泽雨, 胡泽勇, 杜萍, 等, 2003.藏北高原典型草甸下垫面与HEIFE沙漠区辐射平衡气候学特征对比分析[J].太阳能学报, 24(4): 453-460.
[22]施红, 许建明, 李成才, 2009.华南地面太阳辐射状况及其转折特征分析[J].热带气象学报, 25(2): 209-215.
[23]孙雪峰, 陈灵芝, 1995.暖温带落叶阔叶林辐射能量环境初步研究[J].生态学报, 15(3): 278-286.
[24]王超, 韦志刚, 李振朝, 2010.敦煌戈壁气象塔站资料的质量控制[J].干旱气象, 28(2): 121-127.
[25]王超, 韦志刚, 李振朝, 等, 2012.敦煌戈壁地区净辐射变化特征[J].干旱区研究, 29(2): 251-256.
[26]王慧, 胡泽勇, 李栋梁, 等, 2009.黑河地区鼎新戈壁与绿洲和沙漠下垫面地表辐射平衡气候学特征的对比分析[J].冰川冻土, 31(3): 464-473.
[27]王兴, 张强, 王胜, 2012.陇东黄土高原塬区地表辐射及土壤水热特征研究[C]// S1灾害天气研究与预报.
[28]王兴, 张强, 王胜, 2013.中国黄土高原半湿润地区陆面温、 湿特性及辐射收支特征研究[J].高原气象, 32(5): 1272-1279.DOI: 10.7522/J.issn.1000-0534.2013.00058.
[29]韦志刚, 胡嘉骢, 董文杰, 等, 2016.珠海凤凰山陆气相互作用与碳通量观测塔的基本观测及晴天主要观测量的日变化特征[J].大气科学, 40(2): 423-436.DOI: 10.3878/j.issn.1006-9895. 1503.15111.
[30]谢琰, 文军, 刘蓉, 等, 2018.太阳辐射和水汽压差对黄河源区高寒湿地潜热通量的影响研究[J].高原气象, 37(3): 614-625.DOI: 10.7522/j.issn.1000-0534.2017.00063.
[31]杨佳希, 李振朝, 韦志刚, 等, 2017.稀疏植被地表分光辐射及其反照率特征研究[J].太阳能学报, 38(3): 852-859.
[32]殷代英, 屈建军, 余晔, 等, 2018.敦煌湖泊湿地生态系统地表辐射平衡特征[J].中国沙漠, 38(1): 172-181.
[33]余鸽, 王得祥, 陈书军, 等, 2007.秦岭火地塘林区油松林辐射平衡特征研究[J].西北林学院学报, 22(3): 21-24.
[34]张强, 王胜, 2007.干旱荒漠区土壤水热特征和地表辐射平衡年变化规律研究[J].自然科学进展, 17(2): 211-216.
[35]张强, 周毅, 2002.敦煌绿洲夏季典型晴天地表辐射和能量平衡及小气候特征[J].植物生态学报, 26(6): 717-723.
[36]张一平, 窦军霞, 于贵瑞, 等, 2005.西双版纳热带季雨林太阳辐射特征研究[J].北京林业大学学报, 27(5): 17-25.
[37]赵春霞, 郑有飞, 吴荣军, 等, 2013.我国东南沿海地区城市太阳辐射变化差异及其影响因素分析[J].热带气象学报, 29(3): 465-473.
[38]郑志远, 韦志刚, 李振朝, 等, 2012.敦煌戈壁秋初太阳分光辐射及其反照率特征[J].太阳能学报, 33(11): 1937-1943.
[39]周万福, 周秉荣, 李晓东, 等, 2013.青藏高原东部地区辐射平衡及各分量变化特征[J].高原气象, 32(2): 327-333.DOI: 10. 7522/j.issn.1000-0534.2012.00032.
[40]邹基玲, 季国良, 1996.藏北高原太阳总辐射和地表反射率的分光特征[J].太阳能学报, 17(2): 2-6.
Outlines

/