Simulation Research of Ice Cloud Microphysical Parameter Retrieval at 220 GHz

  • Xia DING ,
  • Xingyou HUANG ,
  • Jing HE ,
  • Yiwei HUO ,
  • Haitao WANG
Expand
  • <sup>1.</sup>Shanghai Radio Equipment Research Institute,Shanghai 200090,China;<sup>2.</sup>Shanghai Engineering Research Center of Target Identification and Environment Perception,Shanghai 200090,China;<sup>3.</sup>Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China;<sup>4.</sup>Shanghai Key Laboratory of Electromagnetic Environmental Effects for Aerospace Vehicle,Shanghai 200090,China

Received date: 2018-08-29

  Online published: 2020-10-28

Abstract

A retrieval algorithm based on optimal estimation theory for ice cloud properties, including effective radius (re), ice water content (IWC) and particle number concentration (NT), has been investigated with simulated radar reflectivity factor (Ze) at 220 GHz in this paper.Four ice crystal habits, including spherical, hexagonal column, plate, and six-branch bullet rosette, are considered.Assuming a modified Gamma partical size distribution (PSD), Look up table (LUT) has been build based on the scattering properties of spherical and nonspherical ice cloud particles at 220 GHz.Simulated Ze in LUT represents the measured vector, corresponding re and IWC is taken as a priori xareaIWCa), then rereIWCre and NTre are retrieved based on optimal estimation theory.If xa equals the simulated true solution, the retrieval results seem nearly the same with the truth.When xa is far from the truth, the algorithm still successfully find a solution close to the truth through several iterations because simulated radar measurement Ze contains significant information of ice cloud properties, which indicate that the algorithm does not only rely on the a priori accuracy.The algorithm error analysis shows, as xa getting closer to the true solution, retrieval error and iteration number became smaller, which demonstrate that a better a priori can improve the retrieval accuracy and speed up the convergence process.This algorithm is expected to be applied to the cirrus cloud microphysical parameter retrieval for Terahertz Cloud radar.

Cite this article

Xia DING , Xingyou HUANG , Jing HE , Yiwei HUO , Haitao WANG . Simulation Research of Ice Cloud Microphysical Parameter Retrieval at 220 GHz[J]. Plateau Meteorology, 2020 , 39(5) : 1080 -1088 . DOI: 10.7522/j.issn.1000-0534.2019.00071

References

[1]Austin R T, Heymsfield A J, Stephens G L, 2009.Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature [J].Journal of Geophysical Research, 114: D00A23.
[2]Austin R T, Stephens G L, 2001.Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat: 1.Algorithm formulation [J].Journal of Geophysical Research, 106(D22): 28233-28242.
[3]Battaglia A, Westbrook C D, Kneifel S, al et, 2014.G-band atmospheric radars: New frontiers in cloud physics [J].Atmospheric Measurement Techniques Discussions, 7: 321-375.
[4]Baum B A, Heymsfield A J, Yang P, al et, 2005a.Bulk scattering properties for the remote sensing of ice clouds.Part I: Microphysical data and models [J].Journal of Applied Meteorology, 44(12): 1885-1895.
[5]Benedetti A, Stephens G L, Haynes J M, 2003.Ice cloud microphysics retrievals from millimeter radar and visible optical depth using an estimation theory approach [J].Journal of Geophysical Research, 108(D11), 4335.
[6]Delano? J, Hogan R J, 2008.A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer [J].Journal of Geophysical Research, 113: D07204.
[7]Deng M, Mace G G, Wang Z, al et, 2010.Tropical composition, cloud and climate coupling experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar [J].Journal of Geophysical Research, 115: D00J15.
[8]Draine B T, Flatau P J, 1994.Discrete-dipole approximation for scattering calculations [J].Journal of the Optical Society of America A-optics Image Science and Vision, 11: 1491-1499.
[9]Heymsfield A J, Kr?mer M, Luebke A, al et, 2017.Cirrus clouds [J].Meteorological Monographs, 58: 2.1-226.
[10]Hong G, 2007.Parameterization of scattering and absorption properties of nonspherical ice crystals at microwave frequencies [J].Journal of Geophysical Research, 112: D11208.
[11]Liu C L, Illingworth A J, 2000.Toward more accurate retrievals of ice water content from radar measurements of clouds [J].Journal of Applied Meteorology, 39: 1130-1146.
[12]Liu G S, 2008.A database of microwave single-scattering properties for nonspherical ice particles[J].Bulletin of the American Meteorological Society, 89(10): 1563-1570.
[13]Loeb N G, Yang P, Rose F G, al et, 2018.Impact of ice cloud microphysics on satellite cloud retrievals and broadband flux radiative transfer model calculations [J].Journal of Climate, 31: 1851-1864.
[14]Lynch D, 2002.Cirrus: History and definitions [M].Oxford University Press, New York.
[15]Mace G G, Benson S, Vernon E, 2006.Cirrus clouds and the large-scale atmospheric state: Relationships revealed by six years of ground-based data [J].Journal of Climate, 19: 3257-3278.
[16]Matzler C, 2006.Microwave dielectric properties of ice, In thermal microwave radiation: Applications for remote sensing [M].Electromagnetic Waves Series, 52: 455-462
[17]Mead J B, Mcintosh R E, 1990.A 225 GHz polarimetric radar [J].IEEE Transaction on Microwave Theory and Techniques, 38(9), 1252-1258.
[18]Mead J B, Mcintosh R E, Vandemark D, al et, 1989.Remote sensing of clouds and fog with a 1.4 mm radar[J].Journal of Atmospheric and Oceanic Technology, 6: 1090-1097.
[19]Miles N L, Verlinde J, Clothiaux E E, 2000.Cloud droplet size distributions in low-level stratiform clouds [J].Journal of the Atmospheric Sciences, 57: 295-311.
[20]Protat A, Heymsfield A J, 2007.Evaluation of ice water content retrievals from cloud radar reflectivity and temperature using a large airborne in situ microphysical database [J].Journal of Applied Meteorology and Climatology, 46: 557-572.
[21]Ray P S, 1972.Broadband complex refractive indices of ice and water [J].Applied Optics, 11: 1836-1844.
[22]Sassen K, Campbell J R, 2001.A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing: Part I: Macrophysical and synoptic properties [J].Journal of the Atmospheric Sciences, 58: 481-496.
[23]Stephens G L, 2005.Cloud feedbacks in the climate system: A critical review [J].Journal of Climate, 18: 237-273.
[24]Stephens G L, Vane D G, Boain R J, al et, 2002.The CloudSat mission and the A-train: A new dimension to space-based observations of clouds and precipitation [J].Bulletin of the American Meteorological Society, 83: 1771-1790.
[25]陈纹锋, 郑有飞, 王立稳, 等, 2019.基于DARDAR数据的中国地区不同光学厚度下冰云特性分析[J].高原气象, 38(6): 1309-1319.DOI: 10.7522/j.issn.1000-0534.2019.00051.
[26]高仲辉, 黄兴玉, 魏鸣, 等, 2014.机载W波段双线偏振测云雷达回波分析[J].雷达科学与技术, 12(5): 561-568.
[27]李帅, 侯小刚, 崔宇, 等, 2019.基于FY-2F资料的新疆区域云系特征研究[J].高原气象, 38(3): 617-624.DOI: 10.7522/j.issn. 1000-0534.2018.00101.
[28]林彤, 郑有飞, 李特, 等, 2018.基于卫星资料的中国西北地区冰云特征分析[J].高原气象, 37(4): 1051-1060.DOI: 10.7511/j.issn.1000-0534.2017.00088.
[29]吴举秀, 魏鸣, 周杰, 2014.六角形冰晶的94 GHz毫米波后向散射特性的模拟计算分析[J].高原气象, 33(1): 252-260.DOI: 10.7522/j.issn.1000-0534.2013.00003.
[30]姚志刚, 杨超, 赵增亮, 等, 2018.毫米波雷达反演层状云液态水路径研究[J].高原气象, 37(1): 223-233.DOI: 10.7522/j.issn. 1000-0534.2016.00127.
[31]张琪, 李跃清, 任景轩, 2018.青藏高原东侧不同云类对气温变化影响的初步分析[J].高原气象, 37(3): 734-746.DOI: 10. 7522/j.issn.1000-0534.2017.00085.
[32]郑晨雨, 刘黎平, 2020.Ka/Ku双波段云雷达探测云降水滴谱和空气垂直运动速度的能力模拟分析[J].高原气象, 39(3): 543-559.DOI: 10.7522/j.issn.1000-0534.2019.00126.
[33]仲凌志, 刘黎平, 2009.毫米波测云雷达的特点及其研究现状与展望[J].地球科学进展, 24(4): 383-391.
Outlines

/