An overview of orographic precipitation (OP) is presented, including the experimental studies, physic mechanism and its forecasting methods.The effects of orographic dimension and geometry, water vapor condensation and atmospheric stability on OP are summarized, as well as the progress on the linear OP model, topographic parameterization and its forecasting methods.The current challenges of research on OP are summarized.The improvement of the research on the mechanism of OP and the forecasting methods need to further carry out a variety of topographic observation experiments and analysis of mechanisms based on multi-source data.Furthermore, a new simplified OP parameterization scheme (SOP) is evaluated based on a linear orographic precipitation scheme by considering both the sub-grid topographic blocking effects and the probability of atmospheric precipitation.The application of the SOP scheme is implemented based on GRAPES (Global/Regional Assimilation and Prediction System).The results show that the SOP scheme could predict the extreme OP over the mountainous terrain and capture the weak precipitation over the lee side of the mountain.Seasonal experiments showed that the intensity and distribution of the simulated OP had some typical correspondences with surface observations over the mountainous terrain.The SOP scheme provides useful reference values for the precipitation forecast over complex terrain, and also help to better predict the OP especially when the model underestimate the precipitation from microphysics scheme over the mountainous terrain.Further researches are needed to study the interaction of the weather systems under multi-scale complex terrain, and to improve the theoretical technology of numerical model dynamics, physical process and data assimilation, so as to improve the understanding of influencing mechanism and forecast methods for orographic precipitation.
Shuixin ZHONG
. Advances in the Study of the Influencing Mechanism and Forecast Methods for Orographic Precipitation[J]. Plateau Meteorology, 2020
, 39(5)
: 1122
-1132
.
DOI: 10.7522/j.issn.1000-0534.2019.00083
[1]Bader M J, Roach W T, 1977.Orographic rainfall in warm sectors of depression[J].Quarterly Journal of the Royal Meteorological Society, 103(436): 269-280.
[2]Banta R M, 1990.The role of mountain flows in making clouds.In atmospheric processes over complex terrain[M].American Meteorological Society, Boston, MA.229-283.
[3]Barros A P, Lettenmaier D P, 1993.Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas[J].Monthly Weather Review, 121(4): 1195-1214.
[4]Bergeron T, 1960.Operation and results of “Project PluviuS”[J].Physics of Precipitation, 5: 152-157.
[5]Bond N, Mass C F, Smull B F, 1997.The coastal observations and simulations with topography (COAST) experiment[J].Bulletin of the American Meteorological Society, 78: 1941-1955.
[6]Bougeault P, Binder P, Buzzi A, al et, 2001.The MAP special observing period[J].Bulletin of the American Meteorological Society, 82(3): 433-462.
[7]Bruintjes R T, Clark T L, Hall W D, 1994.Interactions between topographic airflow and cloud/precipitation development during the passage of a winter storm in Arizona[J].Journal of the Atmospheric Sciences, 51(1): 48-67.
[8]Buzzi A, Tartaglione N, Malguzzi P, 1998.Numerical simulations of the 1994 Piedmont flood: Role of orography and moist processes[J].Monthly Weather Review, 126(9): 2369-2383.
[9]Colle B A, 2004.Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective[J].Journal of the Atmospheric Sciences, 61(5): 588-606.
[10]Colle B A, Garvert M F, Wolfe J B, al et, 2005a.The 13–14 December 2001 IMPROVE-2 event Part III: Simulated microphysical budgets and sensitivity studies[J].Journal of the Atmospheric Sciences, 62(10): 3535-3558.
[11]Colle B A, Lin Y, Medina S, al et, 2008.Orographic modification of convection and flow kinematics by the Oregon Coast Range and Cascades during IMPROVE-2[J].Monthly Weather Review, 136(10): 3894-3916.
[12]Colle B A, Mass C F, 1996.An observational and modeling study of the interaction of low-level southwesterly flow with the Olympic Mountains during COAST IOP 4[J].Monthly Weather Review, 124(10): 2152-2175.
[13]Colle B A, Wolfe J B, Steenburgh W J, al et, 2005b.High-resolution simulations and microphysical validation of an orographic precipitation event over the Wasatch Mountains during IPEXIOP3[J].Monthly Weather Review, 133(10): 2947-2971.
[14]Colton D E, 1976.Numerical simulation of the orographically induced precipitation distribution for use in hydrologic analysis[J].Journal of Applied Meteorology, 15(12): 1241-1251.
[15]Cox J A, Steenburgh W J, Kingsmill D E, al et, 2005.The kinematic structure of a Wasatch Mountain winter storm during IPEX IOP3[J].Monthly Weather Review, 133(3): 521-542.
[16]Crochet P, Jóhannesson T, Jónsson T, al et, 2007.Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation[J].Journal of Hydrometeorology, 8(6): 1285-1306.
[17]Doswell III C A, Ramis C, Romero R, al et, 1998.A diagnostic study of three heavy precipitation episodes in the western Mediterranean region[J].Weather and Forecasting, 13(1): 102-124.
[18]Durran D R, Klemp J B, 1982.The effects of moisture on trapped mountain lee wave[J].Journal of the Atmospheric Sciences, 39(11): 2490-2506.
[19]Elliott R D, Hovind E L, 1964.The water balance of orographic cloud[J].Journal of Applied Meteorology, 3(3): 235-239.
[20]Falvey M, Garreaud R, 2007.Wintertime precipitation episodes in central Chile: AsSociated meteorological conditions and orographic influence[J].Journal of Hydrometeorology, 8(2): 171-193.
[21]Galewsky J, Sobel A, 2005.Moist dynamics and orographic precipitation in northern and central California during the New Year’s flood of 1997[J].Monthly Weather Review, 133(6): 1594-1612.
[22]Garreaud R, Falvey M, Montecinos A, 2016.Orographic precipitation in coastal southern Chile: Mean distribution, temporal variability, and linear contribution[J].Journal of Hydrometeorology, 17(4): 1185-1202.
[23]Garvert M F, Smull B, Mass C, 2007.Multiscale mountain waves influencing a major orographic precipitation even[J].Journal of the Atmospheric Sciences, 64(3): 711-737.
[24]Gaudet B, Cotton W R, 1998.Statistical characteristics of a real-time precipitation forecasting model[J].Weather and Forecasting, 13(4): 966-982.
[25]Grubi?i? V, Vellore R K, Huggins A W, 2005.Quantitative precipitation forecasting of wintertime storms in the Sierra Nevada: Sensitivity to the microphysical parameterization and horizontal resolution[J].Monthly Weather Review, 133(10): 2834-2859.
[26]Hobbs P V, 1975.The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding.Part I: Natural condition[J].Journal of Applied Meteorology, 14(5): 783-804.
[27]Hohenegger C, Lüthi D, Sch?r C, 2006.Predictability mysteries in cloud-resolving model[J].Monthly Weather Review, 134(8): 2095-2107.
[28]Hohenegger C, Walser A, Langhans W, al et, 2008.Cloud-resolving ensemble simulations of the August 2005 Alpine flow[J].Quarterly Journal of the Royal Meteorological Society, 134(633): 889-904.
[29]Houze R A, McMurdie L A, Petersen W A, al et, 2017.The Olympic Mountains Experiment (OLYMPEX) [J].Bulletin of the American Meteorological Society, 98, 2167-2188.
[30]James C N, Houze R A, 2005.Modification of precipitation by coastal orography in storms crossing northern California[J].Monthly Weather Review, 133(11): 3110-3131.
[31]Jiang Q, 2006.Precipitation over Concave Terrain[J].Journal of the Atmospheric Sciences, 63: 2269–2288.
[32]Kuo Y H, Chen G T J, 1990.The Taiwan area mesoscale experiment.(TAMEX): An overview[J].Bulletin of the American Meteorological Society, 71(4): 488-503.
[33]Lane T P, Reeder M J, Morton B R, al et, 2000.Observations and numerical modelling of mountain waves over the Southern Alps of New Zealand[J].Quarterly Journal of the Royal Meteorological Society, 126(569): 2765-2788.
[34]Lin Y L, Chiao S, Wang T A, al et, 2001.Some common ingredients for heavy orographic rainfall[J].Weather and Forecasting, 16(6): 633-660.
[35]Lin Y L, 2005.Dynamics of orographic precipitation[M].Yearbook of Science & Technology, McGraw Hill Companies, 248-250.
[36]Lin Y, Colle B A, 2009.The 4-5 December 2001 IMPROVE-2 event: Observed microphysics and comparisons with the Weather Research and Forecasting model[J].Monthly Weather Review, 137(4): 1372-1392.
[37]Liu C, Ikeda K, Thompson G, al et, 2011.High-resolution simulations of wintertime precipitation in the Colorado Headwaters region: Sensitivity to physics parameterizations[J].Monthly Weather Review, 139(11): 3533-3553.
[38]Lorente-Plazas R, Jiménez P A, Dudhia J, al et, 2016.Evaluating and improving the impact of the atmospheric stability and orography on surface winds in the WRF model[J].Monthly Weather Review, 144(7): 2685-2693.
[39]Lorente-Plazas R, Mitchell T P, Mauger G, al et, 2018.Local enhancement of extreme precipitation during atmospheric rivers as simulated in a regional climate model[J].Journal of Hydrometeorology, 19(9): 1429-1446.
[40]Luo Y, Zhang R, Wan Q, al et, 2017.The southern China monsoon rainfall experiment (SCMREX)[J].Bulletin of the American Meteorological Society, 98(5): 999-1013.
[41]Massmann A K, Minder J R, Garreaud R D, al et, 2017.The Chilean Coastal Orographic Precipitation Experiment: Observing the influence of microphysical rain regimes on coastal orographic precipitation[J].Journal of Hydrometeorology, 18(10), 2723-2743.
[42]Minder J R, Durran D R, Roe G H, al et, 2008.The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processes[J].Quarterl.Quarterly Journal of the Royal Meteorological Society, 134(633): 817-839.
[43]Morales A, Morrison H, Posselt D J, 2018.Orographic precipitation response to microphysical parameter perturbations for idealized moist nearly neutral flow[J].Journal of the Atmospheric Sciences, 75(6): 1933-1953.
[44]Neiman P J, Ralph F M, White A B, al et, 2002.The statistical relationship between upslope flow and rainfall in California's coastal mountains: Observations during CALJET[J].Monthly Weather Review, 130(6): 1468-1492.
[45]Prein A F, Gobiet A, Truhetz H, al et, 2016.Precipitation in the EURO-CORDEX 0.11<sup>o</sup> and 0.44<sup>o</sup> simulations: High resolution, high benefits?[J].Climate Dynamics, 46(1/2): 383-412.
[46]Ralph F M, Neiman P J, Rotunno R, 2005.Dropsonde observations in low-level Jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: Mean vertical-profile and atmospheric-river characteristics[J].Monthly Weather Review, 133(4): 889-910.
[47]Ralph F M, Neiman P J, Wick G A, 2004.Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98[J].Monthly Weather Review, 132(7): 1721-1745.
[48]Ralph F M, Coauthors, 1999.The California Land-falling Jets Experiment(CALJET): Objectives and design of a coastal atmosphere-ocean observing system deployed during a strong El Ni?o[C]//Preprints, Third Symp.on Integrated Observing Systems, Dallas,TX, Amer.Meteor.Soc.,78-81.
[49]Rhea J O, 1978.Orographic Precipitation Model for Hydrometeo-rological Use[J].Colo St Univ AtmoS Sci Paper, 287.
[50]Richard E, Chaboureau J P, Flamant C, al et, 2011.Forecasting summer convection over the Black Forest: a case study from the Convective and Orographically-induced Precipitation Study (COPS) experiment[J].Quarterly Journal of the Royal Meteorological Society, 137(S1), 101-117.
[51]Roe G H, 2005.Orographic precipitation [J].Annual review of earth and planetary science, 33: 645-671.
[52]Rotunno R, Ferretti R, 2001.Mechanisms of intense Alpine rainfall[J].Journal of the Atmospheric Sciences, 58(13): 1732-1749.
[53]Rotunno R, Houze R A, 2007.Lessons on orographic precipitation from the Mesoscale Alpine Programme[J].Quarterl Journal of the Royal Meteorological Society, 133(625): 811-830.
[54]Schultz D M, Steenburgh W J, Trapp R J, al et, 2002.Understanding Utah winter storms: The intermountain precipitation experiment[J].Bulletin of the American Meteorological Society, 83(2), 189-210.
[55]Siler N, Durran D, 2015.Assessing the impact of the tropopause on mountain waves and orographic precipitation using linear theory and numerical simulations[J].Journal of the Atmospheric Sciences, 72(2): 803-820.
[56]Siler N, Durran D, 2016.What causes weak orographic rain shadows? Insights from case studies in the Cascades and idealized simulations[J].Journal of the Atmospheric Sciences, 73(10): 4077-4099.
[57]Sinclair M R, Wratt D S, Henderson R D, al et, 1997.Factors affecting the distribution and spillover of precipitation in the Southern Alps of New Zealand—A case study[J].Journal of Applied Meteorology, 36(5): 428-442.
[58]Smith R B, 1979.The influence of mountains on the atmosphere[J].Advances in Geophysics, 21: 87-230.
[59]Smith R B, 2006.Progress on the theory of orographic precipitation[J].Geological Society of America Special Papers, 398, 1-16.
[60]Smith R B, Barstad I, 2004.A linear theory of orographic precipitation[J].Journal of the Atmospheric Sciences, 61(12): 1377-1391.
[61]Smith R B, Barstad I, Bonneau L, 2005.Orographic precipitation and Oregon’s climate transition[J].Journal of the Atmospheric Sciences, 62(1): 177-191.
[62]Smith R B, Evan J P, 2007.Orographic precipitation and water vapor fractionation over the southern Ande[J].Journal of Hydrometeorology, 8(1): 3-19.
[63]Smith R B, Jiang Q, Fearon M G, al et, 2003.Orographic precipitation and air mass transformation: An Alpine example[J].Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 129(588): 433-454.
[64]Smith R B, Minder J R, Nugent A D, al et, 2012.Orographic precipitation in the tropics: The Dominica Experiment[J].Bulletin of the American Meteorological Society, 93(10), 1567-1579.
[65]Stockham A J, Schultz D M, Fairman Jr J G, al et, 2018.Quantifying the rain-shadow effect: Results from the Peak District, British Isles[J].Bulletin of the American Meteorological Society, 99(4): 777-790.
[66]Stoelinga M T, Hobbs P V, Mass C F, al et, 2003.Improvement of microphysical parameterization through observational verification experiment[J].Bulletin of the American Meteorological Society, 84(12): 1807-1826.
[67]Veals P G, Steenburgh W J, Campbell L S, 2018.Factors affecting the inland and orographic enhancement of lake-effect precipitation over the Tug Hill Plateau[J].Monthly Weather Review, 146(6): 1745-1762.
[68]White A B, Neiman F, Ralph M, al et, 2003: Coastal orographic rainfall processes observed by radar during the California Land-Falling Jets Experiment[J].Journal of Hydrometeorology, 4: 264-282.
[69]Yuter S E, Houze R A, 2003.Microphysical modes of precipitation growth determined by S-band vertically pointing radar in orographic precipitation during MAP[J].Quarterl Journal of the Royal Meteorological Society, 129(588): 455-476.
[70]Zhong S X, Chen Z T, 2015.Improved wind circulations and precipitation forecasts over Southwest China using a modified orographic parameterization scheme[J].Journal of Meteorological Research.29(1): 132-143.DOI: 10.1007/s13351-014-4934-1.
[71]Zhong S X, Chen Z T, Wang G, al et, 2016.Improved forecasting of cold air outbreaks over shouthern China through orographic gravity wave drag parameterization[J].Journal of Tropical Meteorology.22: 522-534.
[72]Zhong S X, Chen Z T, Xu D S, al et, 2018.Evaluating and improving wind forecasts over South China: the role of orographic parameterization in the GRAPES model[J].Advances in Atmospheric Sciences, 35(6): 713-722.
[73]Zhong S X, Li X Y, Yang S, al et, 2019.Characteristics and synoptic environment of torrential rain in the warm sector over South China: a composite study[J].Meteorology and Atmospheric Physics, 131(5), 1191-1203.
[74]Zhong S X.2020.Diurnal variation of the duration and environment for heavy rainfall during the warm season in South China[J].Atmospheric Science Letters, 21: 1-6.
[75]陈跃, 陈乾, 陈添宇, 等, 2008.祁连山地形云试验区自然地理和气候特征[J].气象科技, 36(5): 575-580.
[76]范广州, 吕世华, 1999.地形对华北地区夏季降水影响的数值模拟研究[J].高原气象, 18(4): 659-667.
[77]廖菲, 洪延超, 郑国光, 2007.地形对降水的影响研究概述[J].气象科技, 35(3): 309-316.
[78]刘晶, 李娜, 陈春艳, 2018.新疆北部一次暖区暴雪过程锋面结构及中尺度云团分析[J].高原气象, 37(1): 158-166.DOI: 10. 7522/j.issn.1000-0534.2017.00008.
[79]吕艺影, 银燕, 陈景华, 等, 2018.雨季青藏高原东部MCC移动特征及其热动力原因分析[J].高原气象, 37(6): 1511-1527.DOI: 10.7522/j.issn.1000-0534.2018.00056.
[80]倪允琪, 周秀骥, 张人禾, 等, 2006.我国南方暴雨的试验与研究[J].应用气象学报, 17(6), 690-704.
[81]孙继松, 2005.气流的垂直分布对地形雨落区的影响[J].高原气象, 24(1): 62-69.
[82]孙建华, 赵思雄, 2002.华南“94·6”特大暴雨的中尺度对流系统及其环境场研究I.引发暴雨的β中尺度对流系统的数值模拟研究[J].大气科学, 26(4): 541-557.
[83]陶诗言, 陈联寿, 徐祥德, 等, 1999.第二次青藏高原大气科学试验理论研究进展(二)[M].北京: 气象出版社, 204-214.
[84]王华, 李宏宇, 仲跻芹, 等, 2019.京津冀一次罕见的双雨带暴雨过程成因分析[J].高原气象, 38(4): 856-871.DOI: 10.7522/j.issn.1000-0534.2018.00102.
[85]徐祥德, 陈联寿, 2006.青藏高原大气科学试验研究进展[J].应用气象学报, 17(6): 756-772.
[86]赵庆云, 张武, 陈晓燕, 等, 2018.一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J].高原气象, 37(3): 767-776.DOI: 10.7522/j.issn.1000-0534.2017.00068.
[87]赵玉春, 王叶红, 2012.风垂直切变对中尺度地形对流降水影响的研究[J].地球物理学报, 55(10): 3213-3229.
[88]钟水新, 陈子通, 2015.天气与气候模式中次网格重力波拖曳参数化的研究[J].高原气象, 34(4): 1177-1185.DOI: 10.7522/j.issn.1000-0534.2014.00045.
[89]钟水新, 陈子通, 戴光丰, 等, 2014a.地形重力波拖曳参数化对热带气旋强度和路径预报影响的研究[J].大气科学, 38(2): 273-284.DOI: 10.3878/j.issn.1006-9895.2013.13131.
[90]钟水新, 陈子通, 黄燕燕, 等, 2014b.地形重力波拖曳参数化方案在华南中尺度模式(GRAPES)中的应用试验[J].热带气象学报.30(3): 633-643.DOI: 10.3969/j.issn.1004-4965. 2014. 03.0.
[91]周天军, 钱永甫, 1996.地形效应影响数值预报结果的试验研究[J].大气科学, 20(4): 452-462.
[92]周秀骥, 薛纪善, 陶祖钰, 2003.98华南暴雨科学试验研究[M].北京: 气象出版社, 1-220.
[93]朱平, 俞小鼎, 2019.青藏高原东北部一次罕见强对流天气的中小尺度系统特征分析[J].高原气象, 38(1): 1-13.DOI: 10. 7522/j.issn.1000-0534.2018.00070.