In this paper, the Piecewise Linear Fitting Model (PLFIM) of climate change was used to analyze the characteristics of the trend transition of the surface sensible heat flux at 70 stations on the Qinghai-Xizang Plateau (hereinafter referred to as plateau) from 1982 to 2018 and the possible causes of the trend change were analyzed from the following aspects: the response rate of the plateau temperature to the warming of the northern hemisphere and the background of atmospheric circulation.Results show that: (1) there is a trend transition from weakening to strengthening in the annual mean surface sensible heat flux on all four climatic zones of the plateau around 2000; the earliest turning point is in 1999 occurred on the Ⅱ zone (the eastern part of plateau), followed by the Ⅰ (the northern part of plateau) and Ⅳ zones (the southeastern part of plateau) are in 2000, the latest turning point is in 2002 occurred on the Ⅲ zone (the southwest part of plateau); the Ⅱ and Ⅲ zones are the key areas with the trend transition of surface sensible heat flux, and the change of the surface sensible heat flux on the Ⅱ zone is mainly caused by the increased of surface-air temperature difference which due to the rapid increase of the ground temperature, while on the Ⅲ zone, the change of the surface sensible heat is mainly affected by the ground wind speed, and the increase of surface wind speed after 2000 plays an important role in the trend transition of the surface sensible heat flux; (2) in pre-2000 epoch (1982-2000), the mid-latitude westerly jet is weaker and the jet axis is southward in the northern hemisphere; meanwhile, the temperatures in the north (south) part of the plateau to the high (low) latitude are abnormally higher (lower), and the meridional temperature gradient and pressure gradient are decreased, these cause the plateau wind speed to decrease continuously during this period, however, the background of the atmospheric circulation is reversed in post-2000 epoch (2000-2018), which alleviates the decreasing trend of the plateau wind speed and causes it to gradually turn into an increasing trend, thus induces the trend transition of the plateau surface sensible heat in this period.
Lu ZHANG
,
Hui WANG
,
Xingdong SHI
,
Dongliang LI
. Characteristics and Causes of Surface Sensible Heat Trend Transition in Central and Eastern Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2020
, 39(5)
: 912
-924
.
DOI: 10.7522/j.issn.1000-0534.2020.00050
[1]Chen L X, Reiter E R, Feng Z Q, 1985.The atmospheric heat source over the Tibetan Plateau: May-August 1979[J].Monthly Weather Review, 113(10): 1771-1790.DOI: 10.1175/1520-0493(1985)1132.0.CO; 2.
[2]Duan A M, Li F, Wang M R, al et, 2011.Persistent weakening trend in the spring sensible heat source over the Tibetan Plateau and its impact on the Asian summer monsoon[J].Journal of Climate, 24 (21): 5671-5682.DOI: 10.1175/JCLI-D-11-00052.1.
[3]Duan A M, Wu G X, 2008.Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades.Part I: observations[J].Journal of Climate, 21(13): 3149-3164.DOI: 10.1175/2007JCLI1912.1.
[4]Duan A M, Wu G X, 2009.Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades.Part II: Connection with climate warming[J].Journal of Climate, 22(15): 4197-4212.DOI: 10.1175/2009JCLI2699.1.
[5]Duan A M, Wu G X, Liu Y M, al et, 2012.Weather and climate effects of the Tibetan Plateau[J].Advances in Atmospheric Sciences, 29(5): 978-992.DOI: 10.1007/s00376-012-1220-y.
[6]Duan A M, Wu G X, 2005.Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J].Climate Dynamics, 24: 793-807.DOI: 10.1007/s00382-004-0488-8.
[7]Easterling D R, Wehner M F, 2009.Is the climate warming or cooling[J].Geophysical Research Letters, 36: L08706.DOI: 10.1029/2009GL037810.
[8]Flanner M G, Shell K M, Barlage M, al et, 2011.Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008 [J].Nature Geoscience, 4(3): 151-155.DOI: 10.1038/NGEO1062.
[9]Guo D L, Wang H J, 2013.Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010 [J].Journal of Geophysical Research Atmospheres, 118(11): 5216-5230.DOI: 10.1002/jgrd.50457.
[10]Kerr R A, 2009.What happen to global warming? Scientists say just wait a bit[J].Science, 326(5949): 28-29.DOI: 10.1126/science.326_28a.
[11]Li R, Zhao L, Ding Y J, al et, 2012.Temporal and spatial variations of the active layer along the Qinghai-Tibet highway in a permafrost region[J].Chinese Science Bulletin, 57(35): 4609-4616.DOI: 10.1007/s11434-012-5323-8.
[12]Liu Y M, Wu G X, Hong J L, al et, 2012.Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II change[J].Climate Dynamics, 39(5): 1183-1195.DOI: 10. 1007/s00382-012-1335-y.
[13]Ma W Q, Ma Y M, 2016.Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau[J].Theoretical and Applied Climatology, 125(1): 45-52.DOI: 10.1007/s00704-015-1495-x.
[14]Medhaug I, Stolpe M B, Fischer E M, al et, 2017.Reconciling controversies about the 'global warming hiatus'[J].Nature, 545(7652): 41-47.DOI: 10.1038/nature22315.
[15]Smith T M, Peterson T C, Lawrimore J H, al et, 2005.New surface temperature analyses for climate monitoring[J].Geophysical Research Letters, 32: L14712.DOI: 10.1029/2005GL023402.
[16]Tomé A R, Miranda P M A, 2004.Piecewise linear fitting and trend changing points of climate parameters [J].Geophysical Research Letters, 31: L02207.DOI: 10.1029/2003GL019100.
[17]Wang H, Hu Z Y, Li D L, al et, 2019.Estimation of the surface heat transfer coefficient over the east-central Tibetan Plateau using satellite remote sensing and field observation data[J].Theoretical and Applied Climatology, 138: 169-183.DOI: 10.1007/s00704-019-02815-x.
[18]Wang H, Li D L, 2018.Decadal Variability in Summer Precipitation over Eastern China and its Response to Sensible Heat over the Tibetan Plateau since the Early 2000s[J].International Journal of Climatology.DOI: 10.1002/joc.5903.
[19]Wu G X, Zhang Y S, 1998.Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea[J].Monthly Weather Review, 126(4): 913-927.DOI: 10.1175/1520-0493(1998)126<0913: TPFATT>2.0.CO; 2.
[20]Wu Q B, Zhang T J, Liu Y Z, 2010.Permafrost temperatures and thickness on the Qinghai-Tibet Plateau[J].Global and Planetary Change, 72: 32-38.DOI: 10.1016/j.gloplacha.2010.03.001.
[21]Yanai M, Li C F, Song Z S, 1992.Seasonal heating of the Plateau and its effects on the evolution of the Asia monsoon[J].Journal of the Meteorological Society of Japan, 70(1): 319-351.DOI: 10.2151/jmsj1965.70.1B_319.
[22]Yang K, Guo X F, Wu B Y, 2011.Recent trends in surface sensible heat flux on the Tibetan Plateau[J].Science China Earth Sciences, 54(1): 19-28.DOI: 10.1007/s11430-010-4036-6.
[23]Yang K, Wu H, Qin J, al et, 2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J].Global and Planetary Change, 112: 79-91.DOI: 10. 1016/j.gloplacha.2013.12.001.
[24]Yeh T C, 1982.Some aspects of the thermal influences of the Qinghai-Tibetan Plateau on the atmospheric circulation[J].Meteorology and Atmospheric Physics, 31(3): 205-220.DOI: 10.1007/BF02258032.
[25]Ye D Z, Wu G X, 1998.The role of the heat source of the Tibetan Plateau in the general circulation[J].Meteorology and Atmospheric Physics, 67: 181-198.DOI: 10.1007/bf01277509.
[26]You Q L, Fraedrich K, Min J Z, al et, 2014.Observed surface wind speed in the Tibetan Plateau since1980 and its physical causes[J].International Journal of Climatology, 34(6): 1873-1882.DOI: 10.1002/joc.3807.
[27]Zhang H X, Li W P, Li W J, 2019.Influence of Late Springtime Surface Sensible Heat Flux Anomalies over the Tibetan and Iranian Plateaus on the Location of the South Asian High in Early Summer[J].Advances in Atmospheric Sciences, 36(1): 93-103.DOI: 10.1007/s00376-018-7296-2.
[28]Zhao P, Chen L X, 2001.Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China[J].Science in China Series D: Earth Sciences, 44(9): 858-864.DOI: 10.1007/BF02907098.
[29]Zhu L H, Huang G, Fan G Z, al et, 2017.Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus[J].Advances in Atmospheric Sciences, 34(10): 1249-1262.DOI: 10.1007/s00376-017-6298-9.
[30]Zou D F, Zhao L, Sheng Y, al et, 2017.A new map of permafrost distribution on the Tibetan Plateau[J].The Cryosphere, 11: 2527-2542.DOI: 10.5194/tc-11-2527-2017.
[31]蔡英, 李栋梁, 汤懋苍, 等, 2003.青藏高原近50年来气温的年代际变化[J].高原气象, 22(5): 464-470.
[32]曹雯, 段春锋, 申双和, 2015.1971 -2010年中国大陆潜在蒸散变化的年代际转折及其成因[J].生态学报, 35(15): 5085-5094.
[33]程国栋, 赵林, 李韧, 等, 2019.青藏高原多年冻土特征、 变化及影响[J].科学通报, 27: 2783-2795.
[34]戴逸飞, 李栋梁, 王慧, 2017.青藏高原感热指数的建立及与华南降水的联系[J].应用气象学报, 28(2): 157-167.DOI: 10. 11898/1001-7313.20170203.
[35]戴逸飞, 王慧, 李栋梁, 2016.卫星遥感结合气象资料计算的青藏高原地面感热特征分析[J].大气科学, 40 (5): 1009-1021.DOI: 10.3878/j.issn.1006-9895.1512.15225.
[36]段安民, 刘屹岷, 吴国雄, 2003.4-6月青藏高原热状况与盛夏东亚降水和大气环流的异常[J].中国科学(地球科学), 33(10): 997-1004.
[37]冯松, 汤懋苍, 王冬梅, 1998.青藏高原是我国气候变化启动区的新证据[J].科学通报, 43(6): 633-636.
[38]冯松, 姚檀栋, 江灏, 等, 2001.青藏高原近600年的温度变化[J].高原气象, 20(1): 105-108.
[39]黄嘉佑, 2004.气象统计分析与预报方法[M].北京: 气象出版社, 36-44.
[40]焦洋, 游庆龙, 林厚博, 等, 2016.1979 -2012年青藏高原地区地面气温时空分布特征[J].干旱区研究, 33(2): 283-291.DOI: 10.13866/j.azr.2016.02.09.
[41]解晋, 余晔, 刘川, 等, 2018.青藏高原地表感热通量变化特征及其对气候变化的响应[J].高原气象, 37(1): 28-42.DOI: 10. 7522/j.issn.1000-0534.2017.00019.
[42]李栋梁, 季国良, 吕兰芝, 2001.青藏高原地面加热场强度对北半球大气环流和中国天气气候异常的影响研究[J].中国科学(地球科学), 31(): 312-319.
[43]李栋梁, 李维京, 魏丽, 等, 2003.青藏高原地面感热及其异常的诊断分析[J].气候与环境研究, 8(1): 71-83.
[44]李林, 朱西德, 秦宁生, 等, 2003.青藏高原气温变化及其异常类型的研究[J].高原气象, 22 (5): 524-530.
[45]李潇, 李栋梁, 王颖, 2015.中国西北东部汛期降水对青藏高原东部春季感热在准3a周期上的响应[J].气象学报, (4): 737-748.
[46]刘桂芳, 卢鹤立, 2010.1961-2005年以来青藏高原主要气候因子的基本特征[J].地理研究, 29(12): 2281-2288.
[47]刘珂, 姜大膀, 2014.中国夏季和冬季极端干旱年代际变化及成因分析[J].大气科学, 38 (2): 309-321.
[48]刘森峰, 段安民, 2017.基于青藏高原春季感热异常信号的中国东部夏季降水的统计预测模型[J].气象学报, 75(6): 903-916.
[49]潘保田, 李吉均, 1996.青藏高原: 全球气候变化的驱动机与放大器(Ⅲ): 青藏高原隆起对气候变化的影响[J].兰州大学学报(自然科学版), 32(1): 108-115.
[50]施晓晖, 徐祥德, 2006.中国大陆冬夏季气候型年代际转折的区域结构特征[J].科学通报, 51(17): 2075-2084.
[51]施晓晖, 徐祥德, 2008.1985-2002年全球陆地气温和降水的年代际趋势转折特征[J].自然科学进展, 18(9): 1016-1026.
[52]宋辞, 裴韬, 周成虎, 2012.1960年以来青藏高原气温变化研究进展[J].地理科学进展, 31(11): 1503-1509.
[53]汤懋苍, 李存强, 张建, 1988.青藏高原及其四周的近代气候变化[J].高原气象, 7(1): 39-49.
[54]王美蓉, 周顺武, 段安民, 2012.近30年青藏高原中东部大气热源变化趋势: 观测与再分析资料对比[J].科学通报, 57(Z1): 178-188.
[55]王婷, 李照国, 吕世华, 等, 2019.青藏高原积雪对陆面过程热量输送的影响研究[J].高原气象, 38(5): 920-934.DOI: 10.7522 /j.issn.1000-0534.2019.00026.
[56]王同美, 吴国雄, 宇婧婧, 2009.春季青藏高原加热异常对亚洲热带环流和季风爆发的影响[J].热带气象学报, 25(B12): 92-102.DOI: 10.3969/j.issn.1004-4965.2009.Z1.011.
[57]魏凤英, 2007.现代气候统计诊断与预测技术[M].2版.北京: 气象出版社, 36-124.
[58]吴国雄, 李伟平, 郭华, 等, 1997.青藏高原感热气泵和亚洲夏季风[M]//叶笃正.赵九章纪念文集.北京: 科学出版社, 116-126.
[59]吴国雄, 刘屹岷, 何编, 等, 2018.青藏高原感热气泵影响亚洲夏季风的机制[J].大气科学, 42(3): 488-504.
[60]吴国雄, 刘屹岷, 刘新, 等, 2005.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学, 29(1): 47-56.
[61]徐丽娇, 胡泽勇, 赵亚楠,等, 2019.1961-2010年青藏高原气候变化特征分析[J].高原气象, 38(5): 911-919.DOI: 10.7522 /j.issn.1000-0534.2018.00137.
[62]徐祥德, 赵天良, 施晓晖, 等, 2015.青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J].气象学报, 73(1): 20-35.
[63]严晓强, 胡泽勇, 孙根厚, 等, 2019.那曲高寒草地长时间地面热源特征及其气候影响因子分析[J].高原气象, 38(2): 253-263.DOI: 10.7522 /j.issn.1000-0534.2018.00091.
[64]姚慧茹, 李栋梁, 2016.1971-2012年青藏高原春季风速的年际变化及对气候变暖的响应[J].气象学报, 74(1): 60-75.
[65]于涵, 张杰, 刘诗梦, 2019.青藏高原地表非绝热加热模态及其与中国北方环流异常的联系[J].高原气象, 38(2): 237-252.DOI: 10.7522 /j.issn.1000-0534.2018.00079.
[66]于威, 刘屹岷, 杨修群, 等, 2018.青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析[J].高原气象, 37(5): 1161-1176.DOI: 10.7522 /j.issn.1000-0534.2018.00027.
[67]张超, 田荣湘, 茆慧玲, 等, 2018.青藏高原中东部地区地表感热通量的时空变化特征[J].气候变化研究进展, 14(2): 127-136.
[68]张长灿, 李栋梁, 王慧, 等, 2017.青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J].高原气象, 36(1): 13-23.DOI: 10.7522 /j.issn.1000-0534.2016.00028.
[69]周秀骥, 赵平, 陈军明, 等, 2009.青藏高原热力作用对北半球气候影响的研究[J].中国科学(地球科学), 39(11): 1473-1486.