Based on the hourly precipitation data of 123 meteorological stations in Sichuan Basin from May to September 1980 to 2012 and 96 short-time heavy rainfall (SHR) days of southwest vortex rainstorm, the spatial-temporal distribution characteristics of SHR are investigated in the process of regional southwest vortex rainstorm.The results show that larger cumulative frequency and precipitation amount of SHR mainly occur at from 21:00 (Beijing time, the same below) to 08:00 the next day, and the larger values are located in western and southern Sichuan Basin.The proportion of stations with more than 50% SHR in the total precipitation is 51%.It is obvious diurnal variation characteristics of SHR events frequency and precipitation.The main starting periods of SHR events is happened from 21:00 to 08:00 the next day.The ratio of frequency and precipitation accounted for the total is 73.8% and 81.4% respectively, and the peak value appears at 04:00.The duration of rainfall are mostly more than 10 hours(10~17 hours), which account for 63.1% of the total events, and the peak value occurs in 14 hours.In spatial distribution, the larger frequency and precipitation stations of SHR events with long duration (7~18 hours) are mainly located in the western basin.It is obvious asymmetry characteristics of SHR events.The asymmetry of precipitation in the western and southern basin is more obvious than that in the northern and eastern basin.
Qiang LI
,
Xiuming WANG
,
Guobing ZHOU
,
Yaping ZHANG
,
Yue HE
. Temporal and Spatial Distribution Characteristics of Short-time Heavy Rainfall during Southwest Vortex Rainstorm in Sichuan Basin[J]. Plateau Meteorology, 2020
, 39(5)
: 960
-972
.
DOI: 10.7522/j.issn.1000-0534.2019.00096
[1]Bao X, Zhang F, Sun J, 2011.Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China [J].Monthly Weather Review, 139: 2790-2810.DOI: 10.1175/MWR-D-11-00006.1.
[2]Fu S M, Sun J H, Zhao S X, al et, 2011.The energy budget of a southwest vortex with heavy rainfall over South China [J].Advances in Atmospheric Sciences, 28(3): 709-724.DOI: 10. 1007/s00376-010-0026-z.
[3]Li J, Yu R C, Yuan W H, al et, 2008.Seasonal variation of the diurnal cycle of rainfall in the southern contiguous China[J].Journal of Climate, 21(22): 6036-6043.DOI: 10.1175/2008jcli2188.1.
[4]Li J, Yu R C, Yuan W H, al et, 2011.Changes in duration-related characteristics of late-summer precipitation over eastern China in the past 40 years [J].Journal of Climate, 24: 5683-5690.DOI: 10.1175/JCLI-D-11-00009.1.
[5]Wang Z, Gao K, 2003.Sensitivity experiments of an eastward-moving southwest vortex to initial perturbations[J].Advances in Atmospheric Sciences, 20(4): 638-649.DOI: 10.1007/bf02915507.
[6]Yu R C, Zhou T J, Xiong A Y, al et, 2007a.Diurnal variations of summer precipitation over contiguous China[J].Geophysical Research Letters, 34: L01704.DOI: 10.1029/2006GL028129.
[7]Yu R C, Xu Y P, Xiong A Y, al et, 2007b.Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China[J].Geophysical Research Letters, 34: L13703, DOI: 10.1029/2007GL030315.
[8]Yu R C, Yuan W H, Li J, al et, 2010.Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China[J].Climate Dynamics, 35(4): 567-576.DOI: 10.1007/s00382-009-0568-x.
[9]Zhou T J, Yu R C, Chen H M, al et, 2008.Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations[J].Journal of Climate, 21(16): 3997-4010.DOI: 10.1175/2008JCLI2028.1.
[10]Yuan W H, Yu R C, Chen H M, al et, 2010.Subseasonal characteristics of diurnal variation in summer monsoon rainfall over central eastern China [J].Journal of Climate, 23: 6684-6695.DOI: 10.1175/2010jcli3805.1.
[11]Qian T T, Zhao P, Zhang F Q, al et, 2015.rainy-season precipitation over the sichuan basin and adjacent regions in southwestern China [J].Monthly Weather Review, 143(1): 383-394.DOI: 10. 1175/MWR-D-13-00158.1.
[12]Huang Y J, Cui X P, 2015.Moisture Sources of Torrential Rainfall Events in the Sichuan Basin of China during Summers of 2009-13[J].Journal of Hydrometeorology, 16(4): 1906-1917.DOI: 10. 1175/JHM-D-14-0220.1.
[13]Zhang Y, Xue M, Zhu K, al et, 2019.What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China?The key role of boundary layer low-level jet inertial oscillations [J].Journal of Geophysical Research, 124: 2643-2664.DOI: 10.1029/2018JD029834.
[14]陈忠明, 闵文彬, 崔春光, 2004.西南低涡研究的一些新进展[J].高原气象, 23(): 1-5.
[15]陈忠明, 闵文彬, 2000.西南低涡的统计研究[M]//陶诗言, 陈联寿, 徐祥徳, 等.第二次青藏高原大气科学实验理论研究进展.北京: 气象出版社, 268-378.
[16]谌贵询, 何光碧, 2008.2000 -2007年西南低涡活动的观测事实分析[J].高原山地气象研究, 28(4): 59-65.
[17]陈炯, 郑永光, 张小玲, 等, 2013.中国暖季短时强降水分布和日变化特征及其与中尺度对流系统日变化关系分析[J].气象学报, 71(3): 367-382.DOI: 10.11676/qxxb2013.035.
[18]陈贵川, 谌芸, 张勇, 等, 2013.“12·7·21”西南涡极端强降雨的成因分析[J].气象, 39(12): 1529-1541.DOI: 10.7519/j.issn. 1000-0526.2013.12.001.
[19]陈贵川, 谌芸, 王晓芳, 等, 2018.一次冷性停滞型西南低涡结构的演变特征[J].高原气象, 37(6): 1628-1642.DOI: 10.7522/j.issn.1000-0534.2018.00093.
[20]程晓龙, 李跃清, 徐祥德, 等, 2019.汛期西南涡暴雨的数值模拟研究[J].高原气象, 38(2): 359-367.DOI: 10.7522/j.issn.1000-0534.2017.00078.
[21]何光碧, 陈静, 李川, 等, 2005.低涡与急流对“04·9”川东暴雨影响的分析与数值模拟[J].高原气象, 24(6): 1012-1023.
[22]何光碧, 2012.西南低涡研究综述[J].气象, 38(2): 155-163.DOI: 10.7519/j.issn.1000-0526.2012.2.003.
[23]郝丽萍, 周瑾, 康岚, 2016.西南涡暴雨天气过程分析和数值模拟试验[J].高原气象, 35(5): 1182-1190.DOI: 10.7522/j.issn. 1000-0534.2015.00046.
[24]韩林君, 白爱娟, 2019.2004-2017年夏半年西南涡在四川盆地形成降水的特征分析[J].高原气象, 38(3): 552-562.DOI: 10. 7522/j.issn.1000-0534.2018.00100.
[25]蒋璐君, 李国平, 母灵, 等, 2014.基于TRMM资料的西南涡强降水结构分析[J].高原气象, 33(3): 607-614.DOI: 10.7522/j.issn.1000-0534.2013.00094.
[26]康岚, 冯汉中, 屠妮妮, 等, 2008.一次川渝大暴雨的中尺度分析[J].气象, 34(10): 40-49.DOI: 10.7519/j.issn.1000-0526. 2008.10.00.
[27]卢敬华, 1986.西南低涡概论[M].北京: 气象出版社, 5-10.
[28]李国平, 2007.青藏高原动力气象学(第二版)[M].北京: 气象出版社, 23-26.
[29]李超, 李跃清, 蒋兴文, 2015.四川盆地低涡的月际变化及其日降水分布统计特征[J].大气科学, 39(6): 1191-1203.DOI: 10. 3878/j.issn.1006-9895.1502.14270.
[30]刘晓冉, 李国平, 2014.一次东移型西南低涡的数值模拟及位涡诊断[J].高原气象, 33(5): 1204-1216.DOI: 10.7522/j.issn. 1000-0534.2013.00151.
[31]李强, 刘德, 王中, 等, 2013.一次台风远距离作用下的西南低涡大暴雨个例分析[J].高原气象, 32(3): 718-727.DOI: 10.7522/j.issn.1000-0534.2012.00067.
[32]李强, 邓承之, 张勇, 等, 2017.1980 -2012年5 -9月川渝盆地小时强降水特征研究[J].气象, 43(9): 1073-1083.DOI: 10.7519/j.issn.1000-0526.2017.09.005.
[33]马振峰, 彭骏, 高文良, 等, 2006.近40年西南地区的气候变化事实[J], 高原气象, 25(4): 633-642.
[34]陶诗言, 1980.中国之暴雨[M].北京: 气象出版社, 225-230.
[35]王作述, 汪迎辉, 梁益国, 1996.一次西南低涡暴雨的数值试验研究[M].暴雨科学、 业务试验和天气动力理论的研究.北京: 气象出版社, 257-267.
[36]王中, 白莹莹, 杜钦, 等, 2008.一次无地面冷空气触发的西南涡特大暴雨分析[J].气象, 34(12): 63-71.DOI: 10.7519/j.issn. 1000-0526.2008.12.00.
[37]温克刚, 詹兆渝, 2006.中国气象灾害大典: 四川卷[M].北京: 气象出版社: 64-207.
[38]王春学, 马振峰, 王佳津, 等, 2017.四川盆地区域性暴雨时空变化特征及其前兆信号研究[J].气象, 43(12): 1517-1526.DOI: 10.7519/j.issn.1000-0526.2017.12.007.
[39]肖玉华, 郁淑华, 高文良, 等, 2018.一例伴随西南涡的入海高原涡持续活动成因分析[J].高原气象, 37(6): 1616-1627.DOI: 10.7522/j.issn.1000-0534.2018.00043.
[40]徐裕华, 王宗德, 王明, 1991.西南气候[M].北京: 气象出版社: 1-5.
[41]宇如聪, 原韦华, 李建, 2013.降水过程的不对称性[J].科学通报, 58(15): 1385-1392.DOI: 10.1007/s11434-012-5653-6.
[42]赵思雄, 傅慎明, 2007.2004年9月川渝大暴雨期间西南低涡结构及其环境场分析[J].大气科学, 31(6): 1059-1075.DOI: 10. 3878/j.issn.1006-9895.2007.06.03.
[43]朱艳峰, 宇如聪, 2003.川西地区夏季降水的年际变化特征及与大尺度环流的联系[J].大气科学, 27(6): 1045-1056.DOI: 10. 3878/j.issn.1006-9895.2003.06.08.
[44]周长艳, 李跃清, 彭骏, 等, 2006.高原东侧川渝盆地降水与水资源特征及变化[J], 大气科学, 30(6): 1217-1226.DOI: 10.3878/j.issn.1006-9895.2006.06.16.
[45]周秋雪, 马莹, 冯良敏,等, 2015.2008-2012年四川强小时雨强的时空分布特征[J].高原气象, 34(5): 1261-1269.DOI: 10. 7522/j.issn.1000-0534.2014.00070.