Based on the observed atmospheric forcing data from the grassland station of Erling Lake in the source region of the Yellow River from May 1, 2014 to August 31, 2015, the model CLM4.5 was driven, and the influence of plateau snow cover on the soil hydrothermal process was carried out.By comparing and analyzing the numerical simulation results, the main conclusions are as follows: (1) With the increase of snow on the plateau, the time of soil thawing lags behind, the more snow accumulated, the later the soil begins to thaw, the faster the thawing rate was, and the shorter the duration of soil thawing process was.(2) Snow cover has a certain heat preservation effect during the frozen period.When snow cover is reduced, the heat preservation effect is weakened, the heat transfer from the soil to the atmosphere is increased, and the heat is mainly transferred to the atmosphere in the form of sensible heat.Snow cover has a certain cooling effect when soil is in the thawing period.The cooling effect lasts until June.(3) During the soil thawing period, snow cover has a certain moisturizing effect.The higher moisture soil brought by snow melt can increase the radiation energy absorbed by the surface, and the higher moisture soil has a large latent heat transfer, which makes the sensible heat flux lower.The higher moisture soil caused by melting snow will last until after June.
Chuang YAO
,
Shihua Lü
,
Zhaoguo LI
,
Xuewei FANG
,
Shaobo ZHANG
. Simulation of the Snow Cover Influence in the Source Regionof the Yellow River on the Hydrothermal Process of Frozen Soil[J]. Plateau Meteorology, 2020
, 39(6)
: 1167
-1180
.
DOI: 10.7522/j.issn.1000-0534.2019.00128
[1]Brunke M A, Broxton P, Pelletier J, et al, 2016.Implementing and evaluating variable soil thickness in the community land model, version 4.5 (CLM4.5)[J].Journal of Climate, 29(9): 3441-3461.
[2]Dai Y, Zeng X, Dickinson R E, et al, 2003.The Common Land Model[J].Bulletin of the American Meteorological Society, 84(8): 1013-1023.
[3]Dickinson E D, 1991.Evapotranspiration models with canopy resistance for use in climate models, a review[J].Agricultural and Forest Meteorology, 54(2/4): 373-388.
[4]Goodrich L E, 1982.The influence of snow cover on the ground thermal regime[J].Canadian Geotechnical Journal, 19(4): 421-432.
[5]Kampenhout L V, Lenaerts J T M, Lipscomb W H, et al, 2017.Improving the Representation of polar snow and firn in the Community Earth System Model[J].Journal of Advances in Modeling Earth Systems, 9(7): 2583-2600.
[6]Park H, Fedorov A N, Zheleznyak M N, et al, 2015.Effect of snow cover on pan-Arctic permafrost thermal regimes[J].Climate Dynamics, 44(9/10): 2873-2895.
[7]Steiner A L, Pal J S, Giorgi F, et al, 2005.The coupling of the Common Land Model (CLM0) to a regional climate model (RegCM)[J].Theoretical & Applied Climatology, 82(3/4): 225-243.
[8]Vernekar A, Zhou J, Shukla J, 1995.The effect of Eurasian snow cover on the Indian monsoon[J].Journal of Climate, 8(2): 248-266.
[9]Xiao Z, Duan A, 2016.Impacts of Tibetan Plateau snow cover on the interannual variability of the East Asian summer monsoon[J].Journal of Climate, 29(23): 8495-8514.
[10]Zhang T, Tong B, Li S, 1985.Influence of snow cover on the lower limit of permafrost in Altai Mountains[J].Journal of Glaciology & Geocryology, 7: 57-64.
[11]保云涛, 游庆龙, 谢欣汝, 2018.青藏高原积雪时空变化特征及年际异常成因[J].高原气象, 37(4): 899-910.DOI: 10.7522/j.issn.1000-0534.2017.00099.
[12]边晴云, 吕世华, 陈世强, 等, 2016.黄河源区降雪对不同冻融阶段土壤温湿变化的影响[J].高原气象, 35(3): 621-632.DOI: 10.7522/j.issn.1000-0534.2016.00029.
[13]边晴云, 吕世华, 文莉娟, 等, 2017.黄河源区不同降雪年土壤冻融过程及其水热分布对比分析[J].干旱区研究, 34(4): 906-911.
[14]常娟, 王根绪, 高永恒, 等, 2012.青藏高原多年冻土区积雪对沼泽、 草甸浅层土壤水热过程的影响[J].生态学报, 32(23): 7289-7301.
[15]常姝婷, 刘玉芝, 华珊, 等, 2019.全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J].高原气象, 38(2): 227-236.DOI: 10.7522/j.issn.1000-0534.2018.00080.
[16]董敏, 余建锐, 1997.青藏高原春季积雪对大气环流影响的模拟研究[J].应用气象学报, 8(增刊): 101-110.
[17]付强, 蒋睿奇, 王子龙, 等, 2015.不同积雪覆盖条件下冻融土壤水分运动规律研究[J].农业机械学报, 46(10): 152-159.
[18]何媛, 文军, 黄彦彬, 等, 2017.黄河源区土壤湿度时空分布的模拟研究[J].高原气象, 36(1): 129-137.DOI: 10.7522/j.issn. 1000-0534.2015.00117.
[19]刘田, 阳坤, 秦军, 等, 2018.青藏高原中、 东部气象站降水资料时间序列的构建与应用[J].高原气象, 37(6): 1449-1457.DOI: 10.7522/j.issn.1000-0534.2018.00060.
[20]马虹, 胡汝骥, 1995.积雪对冻土热状况的影响[J].干旱区地理, 18(4): 23-27.
[21]马学谦, 张小军, 马玉岩, 等, 2019.三江源及其周边地区多源水汽资料对比检验[J].高原气象, 38(1): 78-87.DOI: 10.7522/j.issn.1000-0534.2018.00073.
[22]覃郑婕, 侯书贵, 王叶堂, 等, 2017.青藏高原冬季积雪时空变化特征及其与北极涛动的关系[J].地理研究, 36(4): 743-754.
[23]王澄海, 师锐, 左洪超, 2008.青藏高原西部冻融期陆面过程的模拟分析[J].高原气象, 27(2): 239-248.
[24]王国亚, 毛炜峄, 贺斌, 等, 2012.新疆阿勒泰地区积雪变化特征及其对冻土的影响[J].冰川冻土, 34(6): 1293-1300.
[25]谢琰, 文军, 刘蓉, 等, 2018.太阳辐射和水汽压差对黄河源区高寒湿地潜热通量的影响研究[J].高原气象, 37(3): 614-625.DOI: 10.7522/j.issn.1000-0534.2017.00063.
[26]谢志鹏, 胡泽勇, 刘火霖, 等, 2017.陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J].高原气象, 36(1): 1-12.DOI: 10.7522/j.issn.1000-0534.2016.00012.
[27]严晓强, 胡泽勇, 孙根厚, 等, 2019.那曲高寒草地长时间地面热源特征及其气候影响因子分析[J].高原气象, 38(2): 253-263.DOI: 10.7522/j.issn.1000-0534.2018.00091.
[28]姚闯, 吕世华, 王婷, 等, 2019.黄河源区多、 少雪年土壤冻融特征分析[J].高原气象, 38(3): 474-483.DOI: 10.7522/j.issn. 1000-0534.2018.00142.
[29]姚檀栋, 陈发虎, 崔鹏, 等, 2017.从青藏高原到第三极和泛第三极[J].中国科学院院刊, 32(9): 924-931.
[30]余志豪, 李海盛, 2000.含雪-气相互作用的大气环流模式及其青藏高原积雪模拟[J].气象科学, 20(3): 289-297.
[31]张伟, 周剑, 王根绪, 等, 2013.积雪和有机质土对青藏高原冻土活动层的影响[J].冰川冻土, 35(3): 528-540.
[32]朱玉祥, 丁一汇, 刘海文, 2009.青藏高原冬季积雪影响我国夏季降水的模拟研究[J].大气科学, 33(5): 903-915.