Based on the ECMWF 0.75°×0.75° reanalysis data, the dynamical cause of cold dome’s intensification on 14 February 2016 is analyzed.The isentropic potential vorticity is conserved during the progress and the cold dome at 315 K isentropic surface is characterized by a high potential vorticity center of 6 PVU.In the vertical direction, the high potential vorticity in cold dome transports downward and forms an air column with high potential vorticity.The motion of the cold dome is consistent with that of the high potential vorticity air column.The main cause of cold dome’s intensification in 500 hPa is analyzed, there is an ascending motion in cold dome, and ascending adiabatic expansion cause the cold dome’s intensification.The reasons for the ascending motion in cold dome are analyzed with dynamical diagnostic method.There are two upper jet streams in 300 hPa, and the cold dome is located in the left side of the upper jet stream exits.Due to the influence of the ascending motion caused by upper jet streams’ secondary circulation, the air in clod dome becomes colder adiabatically, it’s the main reason for cold dome strengthening.In addition, as the cold dome moves, the position of the cold dome relative to the low-pressure center changes, and the absolute vorticity at the lowest temperature of clod dome increases, according to the conservation principle of potential vorticity, the air column is stretched, and the cold dome is strengthened.
Chi ZHANG
,
Xinyong SHEN
,
Ling ZHANG
,
Chunyan GUO
,
Xiaofan LI
. The Dynamical Cause of Cold Dome’s Intensification in a Cold Wave Process[J]. Plateau Meteorology, 2021
, 40(2)
: 394
-402
.
DOI: 10.7522/j.issn.1000-0534.2020.00051
[1]Binder H, Boettcher M, Joos H, et al, 2016.The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter[J].Journal of the Atmospheric Sciences, 73(10): 3997-4020.
[2]Ding Y H, 1990.Build-up, air mass transformation and propagation of siberian high and its relations to cold surge in east asia[J].Meteorology & Atmospheric Physics, 44(2): 281-292.
[3]Gwendal R, Robert L, Codron F, 2016.A short-term negative eddy feedback on midlatitude jet variability due to planetary wave reflection[J].Journal of the Atmospheric Sciences, 73(11): 4311-4328.
[4]Hoskins B J, Mcintyre M E, Robertson A W, 1985.On the use and significance of isentropic potential vorticity maps[J].Quarterly Journal of the Royal Meteorological Society, 111(470): 877-946.
[5]Meral D, 2017.The large-scale environment of the European 2012 high-impact cold wave: prolonged upstream and downstream atmospheric blocking[J].Weather, 72(10): 297-301.
[6]Riehl H, Jr S T, 1953.A Further Study on the Relation between the Jet Stream and Cyclone Formation[J].Tellus, 5(1), 66-79.
[7]Shellie M R, Matthew H H, 2016.On the relationship between inertial instability, poleward momentum surges and jet intensifications near midlatitude cyclones[J].Journal of the Atmospheric Sciences, 73(6): 2299-2315.
[8]丁一汇, 马晓青, 2007.2004/2005年冬季强寒潮事件的等熵位涡分析[J].气象学报, 65(5): 695-707.
[9]高守亭, 丁一汇, 1992.寒潮期间高空波动与东亚急流的相互作用[J].大气科学, 16(6): 718-724.
[10]高守亭, 陶诗言, 1991.高空急流加速与低层锋生[J]. 大气科学, 15(2): 13-24.
[11]何光碧, 肖玉华, 师锐, 2019.一次伴有高原低涡和热带气旋活动的持续性暴雨过程分析[J].高原气象, 38(5): 1004-1016.DOI: 10.7522/j.issn.1000-0534.2018.00131.
[12]康志明, 金荣花, 鲍媛媛, 2010.1951 -2006年期间我国寒潮活动特征分析[J].高原气象, 29(2): 420-428.
[13]李崇银, 肖子牛, 1993.大气对外强迫低频遥响应的数值模拟 II: 对欧亚中高纬“寒潮”异常的响应[J].大气科学, 17(5): 523-531.
[14]李艳, 张金玉, 王嘉禾, 等, 2018.典型极端低温事件中高空急流和阻塞高压的特征及其协同作用[J].兰州大学学报(自然科学版), 54(5): 106-115+126.
[15]李长青, 丁一汇, 1989.西北太平洋爆发性气旋的诊断分析[J].气象学报, 47(2): 180-190.
[16]刘金卿, 李子良, 2020.一次西南涡诱生气旋引发的湖南大暴雨个例分析[J].高原气象, 39(2): 311-320.DOI: 10.7522/j.issn. 1000-0534.2019.00028.
[17]陆光明, 姚竞生, 陶祖钰, 1983.寒潮冷堆增强的动力原因[J].气象学报, 1983(4): 393-403.
[18]吕美仲, 彭永清, 1990.动力气象学教程[M].北京: 气象出版社, 83.
[19]裴坤宁, 王磊, 李谢辉, 等, 2019.一次变形场背景下的暴雨位涡诊断研究[J].高原气象, 38(6): 1221-1228.DOI: 10. 7522/j.issn.1000-0534.2019.00021.
[20]冉令坤, 高守亭, 雷霆, 2005.高空急流区内纬向基本气流加速与EP通量的关系[J].大气科学, 29(3): 409-416.
[21]陶诗言, 1959.十年来我国对东亚寒潮的研究[J].气象学报, 30(1): 226-230.
[22]陶祖钰, 郑永光, 2012.位温、等熵位涡与锋和对流层顶的分析方法[J].气象, 38(1): 17-27.
[23]田秀霞, 寿绍文, 2013.2008年12月两次强寒潮过程的等熵位涡分析[J].气象科学, 33(1): 102-108.
[24]童金, 叶金印, 魏凌翔, 2019.江淮地区两次持续性强降雪过程大气环流及低频特征[J].高原气象, 38(4): 845-855.DOI: 10. 7522/j.issn.1000-0534.2018.00118.
[25]王遵娅, 丁一汇, 2006.近53年中国寒潮的变化特征及其可能原因[J].大气科学, 30(6): 14-22.
[26]韦志刚, 朱献, 董文杰, 等, 2019.CFSv2系统对2015年11月中国一次寒潮过程及其欧亚冷空气活动的预报评估[J].高原气象, 38(1): 673-684.DOI: 10.7522/j.issn.1000-0534.2019.00014.
[27]谢安, 卢莹, 陈受钧, 1992.冬季风爆发前西伯利亚高压的演变[J].大气科学, 16(6): 39-47.
[28]谢瑞青, 刘宇迪, 朱金双, 等, 2019.一次极端寒潮天气过程等熵位涡分析[J].气象科技, 47(2): 124-133.
[29]于波, 李桑, 黄富祥, 等, 2019.2016年1月京津冀地区连续性寒潮事件对比分析[J].干旱气象, 37(6): 954-963.
[30]张备, 尹东屏, 孙燕, 等, 2014.一次寒潮过程的多种相态降水机理分析[J].高原气象, 33(1): 190-198.DOI: 10.7522/j.issn. 1000-0534.2012.00171.
[31]张芳丽, 李国平, 罗潇, 2020.四川盆地东北部一次突发性暴雨事件的影响系统分析[J].高原气象, 39(2): 321-332.DOI: 10. 7522/j.issn.1000-0534.2019.00080.
[32]张林梅, 庄晓翠, 胡磊, 2010.新疆阿勒泰地区一次强寒潮天气过程分析[J].干旱气象, 28(1): 71-75.
[33]张培忠, 陈光明, 1999.影响中国寒潮冷高压的统计研究[J].气象学报, 57(4): 494-501.
[34]赵其庚, 1990.一次东亚寒潮过程的等熵位涡分析[J].应用气象学报, 5(4): 392-399.