Observational Analysis on the Surface Energy Balance Status over a Grassland around the Lake Ngoring in Growing Season

  • Qianhui MA ,
  • Murong QI ,
  • Qinghua YANG ,
  • Renhao WU ,
  • Shihua Lü ,
  • Xianhong MENG ,
  • Zhaoguo LI ,
  • Yinhuan AO ,
  • Bo HAN
Expand
  • <sup>1.</sup>Guangdong Province Key Laboratory for Climate Change and Nature Disaster Studies,School of Atmospheric Sciences,Zhongshan University,Zhuhai 519082,Guangdong,China;<sup>2.</sup>Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),Zhuhai 519082,Guangdong,China;<sup>3.</sup>Key Laboratory of Land Surface Process and Climate in Cold and Arid Region,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China;<sup>4.</sup>College of Atmospheric Sciences,Chengdu University of Information Technology Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,Chengdu 610225,Sichuan,China

Received date: 2019-10-29

  Online published: 2020-12-28

Abstract

Based on the observation data from 2011 to 2013 of alpine meadow beside the Lake Ngoring, this study analyzed the characteristics of surface energy flux balance of alpine meadow in the growing period.When the soil heat storage was not considered, there was a great unbalanced energy flux from observations.By considering soil heat storage, the maximum of daily average unbalanced energy flux reduced from 182.76 W·m-2 to 98.68 W·m-2, and the energy closure degree increased from 0.61 to 0.69.A significant diurnal variation in the soil water content at 5 cm depth, which indicated a process of heating and wetting within shallow soil layer during 08:00 and 12:00 (Beijing Time).Such process was suggested to be caused by the condensation of water vapor within soil pore after calculating the heating rate due to the wetting.The heat storage due to the condensation process is about 34% of the total heat storage within soil above 5 cm depth, and its variation is found to be dependent on the solar radiation condition.The condensation process can return a considerable part of the water vapor evaporated from the soil or plant, and might be conducive to the ecological maintenance around a Tibetan lake.

Cite this article

Qianhui MA , Murong QI , Qinghua YANG , Renhao WU , Shihua Lü , Xianhong MENG , Zhaoguo LI , Yinhuan AO , Bo HAN . Observational Analysis on the Surface Energy Balance Status over a Grassland around the Lake Ngoring in Growing Season[J]. Plateau Meteorology, 2020 , 39(6) : 1207 -1218 . DOI: 10.7522/j.issn.1000-0534.2019.00132

References

[1]Ao Y H, Han B, Lu S H, et al, 2016.Internal evaporation and condensation characteristics in the shallow soil layer of an oasis[J].Theoretical and Applied Climatology, 125(1/2): 281-293.DOI: 10.1007/s00704-015-1510-2.
[2]Garratt J R, Segal M, 1988.On the contribution of atmospheric moisture to dew formation[J].Boundary-Layer Meteorology, 45(3): 209-236.DOI: 10.1007/BF01066671.
[3]Jacobs A F G, Pul A, El-Kilani R M M, 1994.Dew formation and the drying process within a maize canopy[J].Boundary-Layer Meteorology, 69(4): 367-378.DOI: 10.1007/BF00718125.
[4]Luo W H, Goudriaan J, 2000.Measuring dew formation and its threshold value for net radiation loss on top leaves in a paddy rice crop by using the dewball: A new and simple instrument[J].International Journal of Biometeorology, 44(4): 167-171.DOI: 10.1007/s004840000071.
[5]Oncley S P, Foken T, Vogt R, et al, 2007.The energy balance experiment EBEX-2000.Part I: Overview and energy balance[J].Boundary-Layer Meteorology, 123(1): 1-28.DOI: 10.1007/s10546-007-9161-1.
[6]Wang J Y, Luo S Q, Li Z G, et al, 2019.The freeze/thaw process and the surface energy budget of the seasonally frozen ground in the source region of the Yellow River[J].Theoretical and Applied Climatology, 138(3/4): 1631-1646.DOI: 10.1007/s00704-019-02917-6.
[7]Yang K, Wang J M, 2008.A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data[J].Science in China Series D: Earth Sciences, 51(5): 721-729.DOI: 10.1007/s11430-008-0036-1.
[8]奥银焕, 吕世华, 李锁锁, 等, 2008.黄河上游夏季晴天地表辐射和能量平衡及小气候特征[J].冰川冻土, 30(3): 426-432.
[9]陈星, 余晔, 陈晋北, 等, 2014.黄土高原半干旱区冬小麦田土壤热通量的计算方法研究[J].高原气象, 33(6): 1514-1525.DOI: 10.7522/j.issn.1000-0534.2013.00091.
[10]狄晓英, 2009.青藏高原土壤热状况及其对能量平衡影响研究[D].兰州: 兰州大学, 1-72.
[11]范新岗, 汤懋苍, 1994.土壤传导-对流热通量计算的初步结果[J].高原气象, 13(1): 15-20.
[12]冯超, 古松, 赵亮, 等, 2010.青藏高原三江源区退化草地生态系统的地表反照率特征[J].高原气象, 29(1): 70-77.
[13]高峰, 王介民, 李新, 等, 2004.青藏高原地表参数的被动微波遥感反演研究[J].兰州大学学报, (6): 86-91.
[14]韩博, 吕世华, 奥银焕, 2011.金塔绿洲土壤中蒸发/凝结过程的初步分析[J].高原气象, 30(6): 1462-1471.
[15]胡良温, 2006.近100年江河源区生态环境与气候演变趋势研究[D].杨凌: 西北农林科技大学, 5-165.
[16]胡媛媛, 仲雷, 马耀明, 等, 2018.青藏高原典型下垫面地表能量通量的模型估算与验证[J].高原气象, 37(6): 1499-1510.DOI: 10.7522/j.issn.1000-0534.2018.00045.
[17]李国平, 段廷扬, 吴贵芬, 2003.青藏高原西部的地面热源强度及地面热量平衡[J].地理科学, (1): 13-18.
[18]李英, 李跃清, 赵兴炳, 2009.青藏高原东坡理塘地区近地层湍流特征研究[J].高原气象, 28(4): 745-753.
[19]李照国, 吕世华, 奥银焕, 等, 2012.鄂陵湖湖滨地区夏季近地层微气象特征与碳通量变化分析[J].地理科学进展, 31(5): 602-608.
[20]马伟强, 马耀明, 胡泽勇, 等, 2004.藏北高原地面辐射收支的初步分析[J].高原气象, 23(3): 348-352.
[21]马伟强, 马耀明, 李茂善, 等, 2005.藏北高原地区地表辐射出支和能量平衡的季节变化[J].冰川冻土, 27(5): 673-679.
[22]钱泽雨, 胡泽勇, 杜萍, 等, 2003.藏北高原典型草甸下垫面与HEIFE沙漠区辐射平衡气候学特征对比分析[J].太阳能学报, (4): 453-460.
[23]屈长良, 2019.1959-2018年黄河源头玛多地区气温变化特征及趋势分析[J].青海气象(2): 25-29.
[24]唐恬, 王磊, 文小航, 2013.黄河源鄂陵湖地区辐射收支和地表能量平衡特征研究[J].冰川冻土, 35(6): 1462-1473.DOI: 10.7522/j.issn.1000-0240.2013.0162.
[25]王少影, 张宇, 吕世华, 等, 2012.玛曲高寒草甸地表辐射与能量收支的季节变化[J].高原气象, 31(3): 605-614.
[26]翁笃鸣, 1991.青藏高原地表净辐射若干重要特征研究[J].南京气象学院学报(2): 151-159.
[27]谢昌卫, 丁永建, 韩海东, 等, 2006.黄河源区径流波动变化对气候要素的响应特征[J].干旱区资源与环境, (4): 7-11.
[28]谢忠奎, 王亚军, 兰念军, 等, 2000.黑河地区土壤及小麦体内水分动态观测分析[J].高原气象, 19(3): 385-390.
[29]严晓强, 胡泽勇, 孙根厚, 等, 2019.那曲高寒草地长时间地面热源特征及其气候影响因子分析[J].高原气象, 38(2): 253-263.DOI: 10.7522/j.issn.1000-0534.2018.00091.
[30]张明礼, 温智, 薛珂, 等, 2016.北麓河地区多年冻土地表能量收支分析[J].干旱区资源与环境, 30(9): 134-138.DOI: 10. 13448/j.issn.1003-7578.
[31]赵军, 2006.内蒙古典型草原露水资源研究初探[D].呼和浩特: 内蒙古大学, 12-93.
[32]周亚, 高晓清, 李振朝, 等, 2017.青藏高原深层土壤热通量的变化特征分析[J].高原气象, 36(2): 307-316.DOI: 10.7522/j.issn.1000-0534.2016.00120.
[33]朱文会, 毛飞, 徐影, 等, 2019.三江源区植被指数对气候变化的响应及预测分析[J].高原气象, 38(4): 693-704.DOI: 10.7522/j.issn.1000-0534.2018.00105.
Outlines

/