RegCM Gravel Parameterization Scheme for Regional Climate Model and Evaluation of Its Simulation Effect over Qinghai-Xizang Plateau

  • Yigang LIU ,
  • Shihua Lü ,
  • Yue XU ,
  • Cuili MA
Expand
  • <sup>1.</sup>Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,College of Atmosphere Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China;<sup>2.</sup>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD),Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China;<sup>3.</sup>Baotou Meteorological Bureau,Baotou 014030,Inner-Mongolia,China

Received date: 2020-07-14

  Online published: 2020-12-28

Abstract

In order to consider the impact of gravel into the regional climate model RegCM4.7, soil data set containing gravel content suitable for RegCM4.7 model was established first and a set of gravel parameterization scheme for regional climate model was developed.Based on this, plateau regional simulation effect of gravel parameterization scheme was evaluated using China land surface integration reanalysis data (CRA-40).Results showed that gravel existed in soil of the entire Qinghai-Xizang Plateau and the higher gravel content occupy below the middle layer of soil.The surface and soil temperature in the Qinghai-Xizang Plateau simulated by original soil water and heat parameterization scheme Generally lower than the reference data, whereas the gravel parameterization scheme had a higher simulation result compared with the original scheme; The volumetric water content in the Qinghai-Xizang Plateau simulated by original soil water and heat parameterization scheme higher in shallow soil, and lower in deep soil of western plateau, whereas the simulation of gravel parameterization scheme has been improved to a certain extent.Through validation, the gravel parameterization scheme has significantly improved the simulation effect of soil water and heat over the Qinghai-Xizang Plateau.

Cite this article

Yigang LIU , Shihua Lü , Yue XU , Cuili MA . RegCM Gravel Parameterization Scheme for Regional Climate Model and Evaluation of Its Simulation Effect over Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2020 , 39(6) : 1257 -1269 . DOI: 10.7522/j.issn.1000-0534.2019.00141

References

[1]Brouwer J, Anderson H, 2000.Water holding capacity of ironstone gravel in a typic Plinthoxeralf in Southeast Australia[J].Soil Science Society of America Journal, 64(5): 1603-1608.DOI: 10. 2136/sssaj2000.6451603x.
[2]Chen Y Y, Yang K, Tang W J, et al, 2012.Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands[J].Science in China (Earth Sciences), 55(6): 1001-1011.DOI: 10.1007/s11430-012-4433-0.
[3]Clapp R B, Hornberger G M, 1978.Empirical equations for some soil hydraulic properties[J].Water Resources Research, 14(4): 601-604.DOI: 10.1029/WR014i004p00601.
[4]Coile T S, 1953.Moisture content of small stone in soil[J].Soil Science, 75(3): 203-208.DOI: 10.1097/00010694-195303000-00004.
[5]Cosby B J, Hornberger G M, Clapp R B, et al, 1984.A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J].Water Resources Research, 20(6): 682-690.DOI: 10.1029/WR020i006p00682.
[6]C?té J, Konrad J M, 2005.A generalized thermal conductivity model for soils and construction materials[J].Canadian Geotechnical Journal, 42(2): 443-458.DOI: 10.1139/t04-106.
[7]Farouki O T, 1981.The thermal properties of soils in cold regions[J].Cold Regions Science & Technology, 5(1): 67-75.DOI: 10. 1016/0165-232X(81)90041-0.
[8]Lawrence D M, Slater A G, 2008.Incorporating organic soil into a global climate model[J].Climate Dynamics, 30(2/3): 145-160.DOI: 10.1007/s00382-007-0278-1.
[9]Peck A J, Watson J D, 1979.Hydraulic conductivity and flow in non-uniform soil[C]//Workshop on Soil Physics and Field Heterogeneity CSIRO.Division of Environmental Mechanics, Canberra, Australia: 31-39.
[10]Russo D, 1983.Leaching characteristics of a stony desert soi1[J].Soil Science Society of America Journal, 47(3): 431-438.DOI: 10.2136/sssaj1983.03615995004700030008x.
[11]Shangguan W, Dai Y J, Duan Q Y, et al, 2014.A global soil data set for earth system modeling[J].Journal of Advances in Modeling Earth Systems, 6(1): 249-263.DOI: 10.1002/2013MS000293.
[12]Yang K, Chen Y Y, Qin J, 2009.Some practical notes on the land surface modeling in the Tibetan Plateau[J].Hydrology and Earth System Sciences, 13(5): 687-701.DOI: 10.5194/hess-13-687-2009.
[13]陈渤黎, 吕世华, 罗斯琼, 2012.CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J].高原气象, 31(6): 1511-1522.
[14]董敏, 朱文妹, 徐祥德, 2001.青藏高原地表热通量变化及其对初夏东亚大气环流的影响[J].应用气象学报, 12(4): 458-468.DOI: 10.3969/j.issn.1001-7313.2001.04.008.
[15]冯晓莉, 申红艳, 李万志, 等, 2020.1961-2017年青藏高原暖湿季节极端降水时空变化特征[J].高原气象, 39(4): 694-705.DOI: 10.7522/j.issn.1000-0534.2020.00029.
[16]何玉洁, 宜树华, 郭新磊, 2017.青藏高原含砂砾石土壤导热率实验研究[J].冰川冻土, 39(2): 343-350.DOI: 10.7522/j.issn. 1000-0240.2017.0039.
[17]胡伟, 马伟强, 马耀明, 等, 2020.GLDAS资料驱动的Noah-MP陆面模式青藏高原地表能量交换模拟性能评估[J].高原气象, 39(3): 486-498.DOI: 10.7522/j.issn.1000-0534.2019.00060.
[18]李凯, 高艳红, Chen Fei, 等, 2015.植被根系对青藏高原中部土壤水热过程影响的模拟[J].高原气象, 34(3): 642-652.DOI: 10.7522/j.issn.1000-0534.2015.00035.
[19]李燕, 高明, 魏朝富, 等, 2006.土壤砾石的分布及其对水文过程的影响[J].中国农学通报, 22(5): 271-271.DOI: 10.3969/j.issn.1000-6850.2006.05.072.
[20]刘少锋, 林朝晖, 2005.通用陆面模式CLM在东亚不同典型下垫面的验证试验[J].气候与环境研究, 10(3): 684-699.DOI: 10. 3969/j.issn.1006-9585.2005.03.034.
[21]罗斯琼, 吕世华, 张宇, 等, 2009.青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J].地球物理学报, 52(4): 77-86.
[22]罗勇, 1995.青藏高原冬春季雪盖对东亚夏季大气环流影响的研究[J].高原气象, 14(4): 505-512.
[23]马琴, 刘新, 李伟平, 等, 2014.青藏高原夏季土壤有机质及砾石影响水热传输特性的数值模拟[J].大气科学, 38(2): 337-351.DOI: 10.3878/j.issn.1006-9895.2013.13119.
[24]潘永洁, 吕世华, 高艳红, 等, 2015.砾石对青藏高原土壤水热特性影响的数值模拟[J].高原气象, 34(5): 1224-1236.DOI: 10. 7522/j.issn.1000-0534.2014.00055.
[25]王澄海, 董文杰, 韦志刚, 2003.青藏高原季节冻融过程与东亚大气环流关系的研究[J].地球物理学报, 46(3): 309-316.DOI: 10.3321/j.issn: 0001-5733.2003.03.005.
[26]王澄海, 师锐, 2007.青藏高原西部陆面过程特征的模拟分析[J].冰川冻土, 29(1): 73-81.
[27]王根绪, 李元首, 吴青柏, 等, 2006.青藏高原冻土区冻土与植被的关系及其对高寒生态系统的影响[J].中国科学(地球科学), 36(8): 743-754.DOI: 10.3321/j.issn: 1006-9267.2006.08.007.
[28]王慧芳, 邵明安, 2006.含碎石土壤水分入渗试验研究[J].水科学进展, 17(5): 604-609.DOI: 10.3321/j.issn: 1001-6791. 2006.05.004.
[29]王愚, 胡泽勇, 荀学义, 等, 2013.藏北高原土壤热传导率参数化方案的优化和检验[J].高原气象, 32(3): 646-653
[30]吴统文, 李培基, 1998.青藏高原多, 少雪年后期西北干旱区降水的对比分析[J].高原气象, 17(4): 364-372.
[31]熊建胜, 张宇, 王少影, 等, 2014.CLM4.0土壤水分传输方案改进在青藏高原陆面过程模拟中的效应[J].高原气象, 33(2): 323-336.DOI: 10.7522/j.issn.1000-0534.2014.00012.
[32]杨成, 吴通华, 姚济敏, 等, 2020.青藏高原表层土壤热通量的时空分布特征[J].高原气象, 39(4): 706-718.DOI: 10.7522/j.issn.1000-0534.2020.00022.
[33]周蓓蓓, 2009.土石混合介质水分溶质运移的试验研究[D].杨凌: 西北农林科技大学.
Outlines

/