In order to improve the simulation ability of the land surface model CLM4.5(Community Land Model) to the alpine meadow on the Qinghai-Xizang Plateau, we used the observation data from June to September of three typical alpine meadow research stations, i.e.Maqu Station, Arou Station and Naqu Station, especially the measured soil properties, to run a single-point numerical simulation test of alpine meadow in summer half year, which provides a basis for improving the parameterization schemes of the model.The main conclusions are as follows: (1) CLM4.5 model can well reproduce the seasonal changes of soil temperature and moisture, radiation flux and surface energy flux on the underlying surface of alpine meadow.The simulation results after modifying soil properties was obviously better than that before modification, but there was still some deviation from the observed.(2) After modified soil properties, the simulation of soil moisture of each layer at Maqu Station and Naqu Station was closer to the observed, and the shallow soil moisture at Arou Station was better than that at deep layer.After modified soil properties, although the model’s land surface conditions were closer to the actual, the improvement of the simulated soil temperature was not obvious.(3) Although the simulated values of reflected radiation before and after modification of soil properties were low at all three stations, the simulated values after modification of soil properties were better than those before modification.However, there was no significant improvement in the simulation of surface long wave radiation, and the correlation between the simulated values and the observed values at Arou Station was higher and the deviation was smaller.(4) The sensible heat flux simulation values of CLM 4.5 model for each station was higher, and after modified soil properties, it was closer to the observed.After modified soil properties, the simulated and observed latent heat flux at Maqu and Naqu station were closer.
Youqi SU
,
Yu ZHANG
,
Minhong SONG
,
Shaoying WANG
,
Lunyu SHANG
,
Ke ZHOU
. Evaluation of Simulated Performance of CLM4.5 in Alpine Meadow over the Qinghai-Xizang Plateau based on Measured Soil Properties[J]. Plateau Meteorology, 2020
, 39(6)
: 1295
-1308
.
DOI: 10.7522/j.issn.1000-0534.2019.000136
[1]Arya L M, Paris J F, 1981.A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data1[J].Soil Science Society of America Journal, 45(6): 1023-1030.DOI: 10.2136/sssaj1981.03615995004500060004x.
[2]Bonan G B, Lawrence P J, Oleson K W, et al, 2011.Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data[J].Journal of Geophysical Research: Biogeosciences, 116(G2): G02014.DOI: 10.1029/2010jg001593.
[3]Chen F, Dudhia J, 2001.Coupling an advanced land surface-hydrology model with the Penn state-NCAR MM5 modeling system.Part II: Preliminary model validation[J].Monthly Weather Review, 129(4): 587-604.DOI: 10.1175/1520-0493(2001)129<0587: CAALSH>2.0.CO; 2.
[4]Chen Y Y, Yang K, Tang W J, et al, 2012.Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands[J].Science China: Earth Sciences, 55(6): 1001-1011.DOI: 10.1007/s11430-012-4433-0.
[5]C?té J, Konrad J M, 2005.A generalized thermal conductivity model for soils and construction materials[J].Canadian Geotechnical Journal, 42(2): 443-458.DOI: 10.1139/t04-106.
[6]Dickinson R E, 1995.Land-atmosphere interaction[J].Reviews of Geophysics, 33(S1): 917-922.DOI: 10.1029/95RG00284.
[7]Dickinson R E, Henderson-Sellers A, Rosenzweig C, et al, 1991.Evapotranspiration models with canopy resistance for use in climate models, a review[J].Agricultural and Forest Meteorology, 54(2/4): 373-388.DOI: 10.1016/0168-1923(91)90014-H.
[8]Giorgio F, Avissar R, 1997.Representation of heterogeneity effects in earth system modeling: Experience from land surface modeling[J].Reviews of Geophysics, 35(4): 413-437.DOI: 10.1029/97RG01754.
[9]Huntington T G, 2007.Available water capacity and soil organic matter[M].New York: Taylor and Francis, 139-143.
[10]Luo S Q, Lü S H, Zhang Y, 2009.Development and validation of the frozen soil parameterization scheme in common land model[J].Cold Regions Science and Technology, 55(1): 130-140.DOI: 10.1016/j.coldregions.2008.07.009.
[11]Ma Y, Fan S, Ishikawa H, et al, 2004.Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateauarea[J].Theoretical and Applied Climatology, 80: 259-273.DOI: 10.1007/s00704-004-0104-1.
[12]Minasny B, McBratney A B, 2007.Estimating the water retention shape parameter from sand and clay content [J].Soil Science Society of America Journal, 71(4): 1105-1110.DOI: 10.2136/sssaj2006.0298N.
[13]Oleson K W, Bonan G B, Feddema J J, et al, 2010.Technical description of an urban parameterization for the Community Land Model (CLMU) [R].Climate and Global Dynamics Division.
[14]Peter-Lidard C D, Blackburm E, Liang X, et al, 1998.The effect of soil thermal conductivity parameterization on surface energy fluxes and temperature[J].Journal of the Atmospheric Sciences, 55(7): 1209-1224.DOI: 10.1175/1520-0469(1998)055<1209: TEOSTC>2.0.CO; 2.
[15]Pielke A R, 2001.Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall[J].Reviews of Geophysics, 39(2): 151-177.DOI: 10.1029/1999RG000072.
[16]Steiner A L, Pal J S, Giorgi F, et al, 2005.The coupling of the Common Land Model (CLMo) to a regional climate model (RegCM)[J].Theoretical and Applied Climatology, 82: 225-243.DOI: 10.1007/s00704-005-0132-5.
[17]Subin Z M, Riley W J, Mironov D, 2012.An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1[J].Journal of Advances in Modeling Earth Systems, 4(1): M02001.DOI: 10.1029/2011MS000072.
[18]Swenson S C, Lawrence D M, 2012a.A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance[J].Journal of Geophysical Research: Atmospheres, 117(D21): D21107.DOI: 10.1029/2012jd018178.
[19]Swenson S C, Lawrence D M, Lee H, 2012b.Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model[J].Journal of Advances in Modeling Earth Systems, 4(3): M08002.DOI: 10.1029/2012MS000165.
[20]Yang K, Chen Y Y, Qin J, 2009.Some practical notes on the land surface modeling in the Tibetan Plateau[J].Hydrology and Earth System Sciences, 13(5): 687-701.DOI: 10.5194/hess-13-687-2009.
[21]Yang Z L, 2004.Modeling land surface processes in short-term weather and climate studies [M]// Observation, Theory and Modeling of Atmospheric Variability.World Scientific Series on Meteorology of East Asia.New Jersey: World Scientific, 288-313.
[22]段志华, 张钰, 张伟, 等, 2012.评估4种寒区陆面、 水文过程模式及在青藏高原的应用前景[J].水资源与水工程学报, 23(6): 43-50.DOI: 1672-643X( 2012) 06-0043-08.
[23]黄珏, 陈海山, 俞淼, 2013.1981 -2008年中国陆地植被NPP对气候变化响应的敏感性试验[J].大气科学学报, 36(3): 316-322.DOI: 10.13878/j.cnki.dqkxxb.2013.03.008.
[24]李茂善, 阴蜀城, 刘啸然, 等, 2019.近10年青藏高原及其周边湍流通量变化的数值模拟[J].高原气象, 38(6): 1140-1148.DOI: 10.7522/j.issn.1000-0534.2018.00145.
[25]李时越, 杨凯, 王澄海, 2018.陆面模式CLM4.5在青藏高原土壤冻融期的偏差特征及其原因[J].冰川冻土, 40(2): 322-334.DOI: 10.7522/j.issn.1000-0240.2018.0037.
[26]梁晓, 戴永久, 2008.通用陆面模式对土壤质地和亮度的敏感性分析 [J].气候与环境研究, 13(5): 585-597.DOI: 10.3878/j.issn.1006-9585.2008.05.01.
[27]刘火霖, 胡泽勇, 韩赓, 等, 2020.基于Noah-MP模式的影响青藏高原冻融过程参数化方案评估[J]. 高原气象, 39(1): 1-14.DOI: 10.7522/j.issn.1000-0534.2019.00009.
[28]罗斯琼, 吕世华, 张宇, 等, 2008.CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].高原气象, 27(2): 259-271.
[29]罗斯琼, 吕世华, 张宇, 等, 2009.青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J].地球物理学报, 52(4): 919-928.DOI: 10.3969/j.issn.0001-5733.2009.04.008.
[30]马琴, 刘新, 李伟平, 等, 2014.青藏高原夏季土壤有机质及砾石影响水热传输特性的数值模拟[J].大气科学, 38(2), 337-351.DOI: 10.3878/j.issn.1006-9895.2013.13119.
[31]潘永洁, 吕世华, 高艳红, 等, 2015.砾石对青藏高原土壤水热特性影响的数值模拟[J].高原气象, 34(5), 1224-1236.DOI: 10. 7522/j.issn.1000-0534.2014.00055.
[32]沈润平, 郭倩, 陈萍萍, 等, 2019.高分辨率大气强迫和植被功能型数据对青藏高原土壤温度模拟影响[J].高原气象, 38(6): 1129-1139.DOI: 10.7522/j.issn.1000-0534.2018.00159.
[33]孙菽芬, 牛国跃, 洪钟祥, 1998.干旱及半干旱区土壤水热传输模式研究[J].大气科学, 22(1): 1-10.DOI: 10.3878/j.issn. 1006-9895.1998.01.01.
[34]涂刚, 2007.半干旱区不同下垫面地气相互作用研究[D].北京: 中国科学院大气物理研究所, 1-128.
[35]王澄海, 师锐, 2007.青藏高原西部陆面过程特征的模拟分析[J].冰川冻土, 29(1): 73-81.
[36]吴龙刚, 王爱慧, 盛炎平, 2014.土壤质地对中国区域陆面过程模拟的影响[J].气候与环境研究, 19(5): 559-571.DOI: 10. 3878/j.issn.1006-9585.2013.13055.
[37]姚洁, 陈海山, 朱伟军, 2010.北半球陆面过程对全球变暖响应特征的初步分析[J].大气科学学报, 33(2): 220-226.DOI: 10. 13878/j.cnki.dqkxxb.2010.02.009.
[38]岳平, 张强, 李耀辉, 等, 2013.半干旱草原下垫面动量和感热总体输送系数参数化关系研究[J].物理学报, 62(9): 527-535.DOI: 10.7498/aps.62.099202.
[39]杨扬, 杨启东, 孙旭映, 等, 2016.三个陆面过程模式在西北半干旱区的模拟性能对比[J].气候与环境研究, 21(4), 405-417.DOI: 10.3878/j.issn.1006-9585.2016.15105.
[40]张宏, 胡波, 刘广仁, 等, 2012.中国土壤热通量的时空分布特征研究[J].气候与环境研究, 17 (5): 515-522.DOI: 10.3878/j.issn.1006-9585.2012.10124.
[41]张宇, 吕世华, 2002.藏北高原陆面过程的模拟试验[J].大气科学, 26(3): 387-393.DOI: 10.3878/j.issn.1006-9895.2002. 03.09.
[42]郑景云, 卞娟娟, 葛全胜, 等, 2013.1981-2010年中国气候区划[J].科学通报, 58(30): 3088-3099.DOI: 10.1360/972012-1491.
[43]周德刚, 黄荣辉, 黄刚, 2009.近几十年来长江上游流域气候和植被覆盖的变化[J].大气科学学报, 32(3): 377-385.DOI: 10.13878/j.cnki.dqkxxb.2009.03.003.