Effects of Shallow Residual Layer on the Development of the Convective Boundary Layer in Naqu Area

  • Hui JING ,
  • Lin ZHAO ,
  • Xianhong MENG ,
  • Bo HAN ,
  • Zhaoguo LI ,
  • Hao CHEN ,
  • Zeyong HU ,
  • Jianfeng ZHANG
Expand
  • <sup>1.</sup>Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China;<sup>2.</sup>University of Chinese Academy of Sciences,Beijing 100049,China;<sup>3.</sup>Guangdong Province Key Laboratory for Climate Change and Nature Disaster Studies,School of Atmospheric Sciences,Zhongshan University,Zhuhai 519082,Guangdong,China;<sup>4.</sup>Southern Laboratory of Ocean Science and Engineering (Zhuhai),Zhuhai 519082,Guangdong,China;<sup>5.</sup>Lanzhou Institute of Physics,Science and Technology on Vacuum Technology and Physics Laboratory,Lanzhou 730000,Gansu,China

Received date: 2020-05-27

  Online published: 2020-12-28

Abstract

In this paper, the atmospheric boundary layer structure of Naqu station on 25 and 26 August 2016 is analyzed by using the radiosonde and other meteorological observation data.The results show that the boundary layer height at 14:00 (Beijing Time,after the same).on August 25 and 26 were 1244 m and 1966 m respectively, while the accumulated surface sensible heat fluxes during 08:00 -14:00 were 605 W·m-2 and 650 W·m-2 respectively.In other words, the difference of the height of convective boundary layer in clear sky can reach 60% when the difference of accumulated surface sensible heat fluxes is only 7%.Further analysis shows that the existence of shallow residual layer may be the main reason for the difference of boundary layer development between the two days.The existence of the shallow residual layer potentially contributes the sensible flux heating the atmosphere in the boundary layer.However, the latest reanalysis data from ECMWF, i.e., ERA5 could not capture the existence of the shallow residual layer, whilst it could reproduce the vertical distribution characteristics of the potential temperature and wind speed basically.

Cite this article

Hui JING , Lin ZHAO , Xianhong MENG , Bo HAN , Zhaoguo LI , Hao CHEN , Zeyong HU , Jianfeng ZHANG . Effects of Shallow Residual Layer on the Development of the Convective Boundary Layer in Naqu Area[J]. Plateau Meteorology, 2020 , 39(6) : 1318 -1328 . DOI: 10.7522/j.issn.1000-0534.2019.00137

References

[1]Banta R M, Senff C J, Alvarez R J, et al, 2011.Dependence of daily peak O3 concentrations near Houston, Texas on environmental factors: Wind speed, temperature, and boundary-layer depth[J].Atmospheric Environment, 45(1): 162-173.DOI: 10.1016/j.atmosenv.2010. 09. 030.
[2]Conzemius R J, Fedorovich E, 2006.Dynamics of sheared convective boundary layer entrainment.Part I: Methodological background and large-eddy simulations[J].Journal of the Atmospheric Sciences, 63(4): 1151-1178.DOI: 10.1175/JAS3691.1.
[3]Engeln A V, Teixeira J, 2013.A planetary boundary layer height climatology derived from ECMWF reanalysis data[J].Journal of Climate, 26(17): 6575-6590.DOI: 10.1175/JCLI-D-12-00385.1.
[4]Fedorovich E, Nieuwstadt F T M, Kaiser R, 2001.Numerical and laboratory study of a horizontally evolving convective boundary layer.Part I: Transition regimes and development of the mixed layer[J].Journal of the Atmospheric Sciences, 58(1): 70-86.DOI: 10.1175/1520-0469 (2001) 058<0070: NALSOA>2.0.CO; 2.
[5]Garratt J R, 1994.The atmospheric boundary layer[M].Cambridge: Cambridge University Press.
[6]Han B, Lv S, Ao Y, et al, 2012.Development of the convective boundary layer capping with a thick neutral layer in Badanjilin: Observations and simulations[J].Advances in Atmospheric Sciences, 29(1): 177-192.DOI: 10.1007/s00376-011-0207-4.
[7]Hennemuth B, Lammert A, 2006.Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter[J].Boundary Layer Meteorology, 120(1): 181-200.DOI: 10. 1007/ s10546-005-9035-3.
[8]Holzworth G C, 1964.Estimates of mean maximum mixing depths in the contiguous United States[J].Monthly Weather Review, 92(5): 235.DOI: 10.1175/1520-0493(1964)092<0235: EOMMMD>2.3.CO; 2.
[9]Joffre S M, Kangas M, Heikinheimo M, et al, 2001.Variability of the stable and unstable atmospheric boundary layer height and its scales over a boreal forest[J].Boundary Layer Meteorology, 99(3): 429-450.DOI: 10.1023/a: 1018956525605.
[10]Lin J, McElroy M B, 2010.Impacts of boundary layer mixing on pollutant vertical pro?les in the lower troposphere: Implications to satellite remote sensing.Atmospheric Environment, 44(14): 1726-1739.DOI: 10.1016/j.atmosenv.2010.02.009.
[11]Liu S, Liang X Z, 2010.Observed diurnal cycle climatology of planetary boundary layer height[J].Journal of Climate, 23(21): 5790-5809.DOI: 10.1175/2010JCLI3552.1.
[12]Marsham J H, Parker D J, Grams C M, et al, 2008.Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara[J].Atmospheric Chemistry and Physics, 8(23): 6979-6993.DOI: 10.5194/acp-8-6979-2008.
[13]Mehta S K, Ratnam M V, Sunilkumar S V, et al, 2017.Diurnal variability of the atmospheric boundary layer height over a tropical station in the Indian monsoon region[J].Atmospheric Chemistry and Physics, 17(1): 531-549.DOI: 10.5194/acp-17-531-2017.
[14]Moeng C H, Sullivan P P, 1994.A comparison of shear-and buoyancy-driven planetary boundary layer flows[J].Journal of the Atmospheric Sciences, 51(7): 999-1022.DOI: 10.1175/1520-0469 (1994) 051<0999: acosab>2.0.co; 2.
[15]Pietersen H, Vilà-Guerau de Arellano J, Augustin P, et al, 2018.Study of a prototypical convective boundary layer observed during BLLAST: contributions by large-scale forcings[J].Atmospheric Chemistry and Physics, 15(8): 4241-4257.DOI: 10. 5194/acp-15-4241-2015.
[16]Pino D, Vilà-Guerau de A J, Duynkerke P, 2003.The contribution of shear to the evolution of a convective boundary layer[J].Journal of the Atmospheric Sciences, 60(16): 1913-1926.DOI: 10.1175/1520-0469 (2003) 060<1913: TCOSTT>2.0.CO; 2.
[17]Pino D, Vilà-Guerau de A J, et al, 2006.Representing sheared convective boundary layer by zeroth-and first-order-jump mixed-layer models: Large-eddy simulation verification[J].Journal of Applied Meteorology and Climatology, 45(9): 1224-1243.DOI: 10.1175/jam2396.1.
[18]Pino D, Vilà-Guerau de Arellano J, 2008.Effects of shear in the convective boundary layer: analysis of the turbulent kinetic energy budget[J].Acta Geophysica, 56(1): 167-193.DOI: 10.2478/s11600-007-0037-z.
[19]Sorbjan Z, 1996.Effects caused by varying the strength of the capping inversion based on a large eddy simulation model of the shear-free convective boundary layer[J].Journal of the Atmospheric Sciences, 53(14): 2015-2024.DOI: 10.1175/1520-0469 (1996) 053<2015: ECBVTS>2.0.CO; 2.
[20]Stull R B, 1988.An Introduction to Boundary Layer Meteorology[M].Netherlands: Springer Netherlands.
[21]Sullivan P P, Moeng C H, Stevens B, et al, 1998.Structure of the entrainment zone capping the convective atmospheric boundary layer[J].Journal of the Atmospheric Sciences, 55(19): 3042-3064.DOI: 10.1175/1520-0469 (1998) 0552.0.CO; 2.
[22]Zhang Q, Wang S, Li Y, 2006.Study on physical mechanism of influence on atmospheric boundary layer depth in the arid regions of northwest China[J].Journal of Meteorological Research, 20(5): 1-12.
[23]Zhao L, Han B, Lv S H, et al, 2018.The different influence of the residual layer on the development of the summer convective boundary layer in two deserts in northwest China[J].Theoretical and Applied Climatology, 131(3): 877-888.DOI: 10.1007/s00704-016-2014-4.
[24]Zilitinkevich S S, 2012.The height of the atmospheric planetary boundary layer: State of the art and new development[J].National Security and Human Health Implications of Climate Change, 147-161.DOI: 10.1007/978-94-007-2430-3_13.
[25]陈万隆, 陈宇能, 1992.草原垦荒行星边界层的数值研究[J].气象学报, 50(4): 450-458.
[26]陈陟, 周明煜, 钱粉兰, 等, 2002.我国西部高原大气边界层中的对流活动[J].应用气象学报, 13(2): 142-155.DOI: 10.3969/j.issn.1001-7313.2002.02.002.
[27]崔洋, 常倬林, 桑建人, 等, 2015.河套干旱地区夏季边界层结构特征观测分析[J].冰川冻土, 37(5): 1257-1267.DOI: 10.7522/j.isnn.1000-0240.2015.0139.
[28]李家伦, 洪钟祥, 孙菽芬, 2000.青藏高原西部改则地区大气边界层特征[J].大气科学, 24(3): 301-312.DOI: 10.3878/j.issn. 1006-9895.2000.03.02.
[29]李茂善, 马耀明, 胡泽勇, 等, 2004.藏北那曲地区大气边界层特征分析[J].高原气象, 23(5): 728-733.
[30]李英, 胡志莉, 赵红梅, 2012.青藏高原大气边界层结构特征研究综述[J].高原山地气象研究, 32(4): 91-96.
[31]马耀明, 胡泽勇, 田立德, 等, 2014.青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J].地球科学进展, 29(2): 207-215.DOI: 10.11867/j.issn.1001-8166.2014.02-0207.
[32]马元仓, 李岩瑛, 杨吉萍, 等, 2019.青海中北部边界层高度与不同灾害天气的关系[J].高原气象, 38(5): 1048-1057.DOI: 10. 7522/j.issn.1000-0534.2018.00136.
[33]盛裴轩, 2013.大气物理学[M].北京: 北京大学出版社.
[34]宋星灼, 张宏升, 刘新建, 等, 2006.青藏高原中部地区不稳定大气边界层高度的确定与分析[J].北京大学学报(自然科学版), 42(3): 328-333.DOI: 10.13209/j.0479-8023.2006.062.
[35]苏彦入, 吕世华, 范广洲, 2018.青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J].高原气象, 37(6): 1470-1485.DOI: 10.7522/j.issn.1000-0534.2018.00040.
[36]陶诗言, 陈联寿, 徐祥德, 1999.第二次青藏高原大气科学试验理论研究进展[M].北京: 气象出版社.
[37]万云霞, 张宇, 张瑾文, 等, 2017.感热变化对东亚地区大气边界层高度的影响[J].高原气象, 36(1): 173-182.DOI: 10.7522/j.issn.1000-0534.2016.00001.
[38]王介民, 邱华盛, 2000.中日合作亚洲季风实验-青藏高原实验 (GAME-Tibet)[J].中国科学院院刊, 15(5): 386-388.DOI: 10.16418/j.issn.1000-3045.2000.05.020.
[39]王倩茹, 范广洲, 葛非, 等, 2018.基于CERA-20C资料青藏高原边界层高度日变化气候特征分析[J].高原气象, 37(6): 1486-1498.DOI: 10.7522/j.issn.1000-0534.2018.00042.
[40]王树舟, 马耀明, 2008.珠峰地区夏季大气边界层结构初步分析[J].冰川冻土, 30(4): 681-687.
[41]魏莹, 段克勤, 2020.1980-2016年青藏高原变暖时空特征及其可能影响原因[J].高原气象, 39(3): 459-466.DOI: 10.7522/j.issn.1000-0534.2019.00121.
[42]吴国雄, 毛江玉, 段安民, 等, 2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报, 62(5): 528-540.DOI: 10.3321/j.issn: 0577-6619.2004.05.002.
[43]吴祖常, 董保群, 1998.我国陆域大气最大混合层厚度的地理分布与季节变化[J].科技通报, 14(3): 11-16.DOI: 10.13774/j.cnki.kjtb.1998.03.003.
[44]徐桂荣, 崔春光, 2009.青藏高原东部及下游关键区大气边界层高度的观测分析[J].暴雨灾害, 28(2): 112-118.DOI: 10.3969/j.issn.1004-9045.2009.02.003.
[45]徐桂荣, 崔春光, 周志敏, 等, 2014.利用探空资料估算青藏高原及下游地区大气边界层高度[J].暴雨灾害, 33(3): 217-227.DOI: 10.3969/j.issn.1004-9045.2014.03.004.
[46]徐祥德, 陈联寿, 2006.青藏高原大气科学试验研究进展[J].应用气象学报, 17(6): 756-772.DOI: 10.3969/j.issn.1001-7313. 2006.06.013.
[47]徐潇然, 赵艳茹, 黄山, 等, 2019.东亚、 北非干旱半干旱区边界层高度的特征研究[J].高原气象, 38(5): 1038-1047.DOI: 10. 7522/j.issn.1000-0534.2018.00144.
[48]张强, 卫国安, 侯平, 2004.初夏敦煌荒漠戈壁大气边界结构特征的一次观测研究[J].高原气象, 23(5): 587-597.
[49]张强, 赵映东, 王胜, 等, 2007.极端干旱荒漠区典型晴天大气热力边界层结构分析[J].地球科学进展, 22(11): 1150-1159.DOI: 10.3321/j.issn: 1001-8166.2007.11.007.
[50]张强, 王胜, 2008.西北干旱区夏季大气边界层结构及其陆面过程特征[J].气象学报, 66(4): 599-608.DOI: 3321/j.issn: 0577-6619.2008.04.013.
[51]张强, 张杰, 乔娟, 等, 2011.我国干旱区深厚大气边界层与陆面热力过程的关系研究[J].中国科学(地球科学), 41(9): 1365-1374.DOI: 10.1007/s11430-011-4207-0.
[52]张杰, 张强, 唐从国, 2012.极端干旱区大气边界层厚度时间演变及其与地表能量平衡的关系[J].生态学报, 33(8): 2545-2555.DOI: 10.5846/stxb201201090046.
[53]张强, 乔梁, 岳平, 等, 2019.干旱区夏季晴空期超厚对流边界层发展的能量机制[J].科学通报, 64(15): 1637-1650.DOI: 10.1360/N972018-01014.
[54]赵采玲, 吕世华, 李照国, 等, 2014.夏季巴丹吉林沙漠陆面热状况对边界层高度影响的模拟实验[J].高原气象, 33(6): 1526-1533.DOI: 10.7522/j.issn.1000-0534.2013.00160.
[55]赵采玲, 吕世华, 韩博, 等, 2016.夏季巴丹吉林沙漠残余层与深厚对流边界层的关系研究[J].高原气象, 35(4): 1004-1014.DOI: 10.7522/j.issn.1000-0534.2015.00080.
[56]赵建华, 张强, 王胜, 2011.西北干旱区对流边界层发展的热力机制模拟研究[J].气象学报, 69(6): 1029-1037.DOI: 10.11676/ qxxb2011.090.
[57]赵平, 李跃清, 郭学良, 等, 2018.青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验[J].气象学报, 76(6): 833-860.DOI: 10.11676/qxxb2018.060.
[58]赵艳茹, 张珂铨, 毛文茜, 等, 2017.100年来东亚和北非干旱半干旱区边界层高度的变化特征研究[J].高原气象, 36(5): 1304-1314.DOI: 10.7522/j.issn.1000-0534.2016.00107.
[59]周文, 杨胜朋, 蒋熹, 等, 2019.利用COSMIC掩星资料研究青藏高原地区大气边界层高度[J].气象学报, 76(1): 117-133.DOI: 10.11676/qxxb2017.069.
[60]朱玉祥, 丁一汇, 徐怀刚, 2007.青藏高原大气热源和冬春积雪与中国东部降水的年代际变化关系[J].气象学报, 65(6): 946-958.DOI: 10.3321/j.issn: 0577-6619.2007.06.012.
[61]左洪超, 胡隐樵, 吕世华, 等, 2004.青藏高原安多地区干、 湿季的转换及其边界层特征[J].自然科学进展, 14(5): 535-540.DOI: 10.3321/j.issn: 1002-008X.2004.05.009.
Outlines

/