In order to improve the prediction and early waning ability of the wind shear over Xining Airport.ERA-Interim reanalysis data, airport automatic meteorological observation station data, wind profile radar data and laser wind radar data was used in this paper, and analyzed the process of low altitude wind shear caused by micro-downburst in Xining Airport on 26 April 2018, comprehensively.The results showed the low-level wind shear occurred in Xining Airport Runway 11, which was a horizontal wind shear during the sudden change of wind speed.Before the occurrence of low-level wind shear, the study area was in the front of the transverse trough, mainly was controled by northwest air flow; The sky over Xining Airport was cloudy with low convective clouds, the condition of surface humidity was good(t-td≤4 ℃); The middle layer contains dry air, which was conducive to the development of convective activities.The wind profile radar showed that there was a strong sinking motion at the time of landing, and appeared low-level precipitation in addition to, there was strong turbulence over 1000 m when 10~20 min before low-level wind shear process.The laser wind radar indicated at 13:25(Beijing Time, after the same), a cyclonic vortex appeared at the landing track line 4.05 km away from the runway entrance and 475 m high, which was the early signal of low-level wind shear.A micro-downburst and thunderstorm high pressure are formed at 13:29-13:30, as well as a moderate divergence 441 m away from the runway entrance, 81 m high which induces horizontal wind shear and leads to low altitude missed approach of the aircraft.The research results of this paper provided a certain reference for understanding the information of the convection system by using the multi-source detection data, and it is important to guide significance for the prediction and early warning of the wind shear over the airport, and provide scientific and technological support for the timely response measures of the aircraft in the wind shear.
Yuqian YAN
,
Weidong TIAN
,
Jinhai LI
,
Binghong HAN
. Comprehensive Application of Multi-source Data in the Analysis of a Low-level Wind Shear Process over Plateau Airport[J]. Plateau Meteorology, 2020
, 39(6)
: 1329
-1338
.
DOI: 10.7522/j.issn.1000-0534.2020.00035
[1]Chafer R, Avery S K, Gage K S, 2003.A comparison of VHF wind profiler observations and the NCEP-NCAR reanalysis over the tropical pacific[J].Journal of Applied Meteorology, 42(7): 873-889.
[2]Council N, 1983.Low-altitude wind shear and its hazard to aviation[M].Low-altitude wind shear and its hazard to aviation: National Academy Press.
[3]Fujita T T, 1981.Tornadoes and downbursts in the context of generalized planetary scales[J].Journal of Atmospheric Sciences, 38(8): 1511-1534.
[4]Paul M, Yvette R, 2007.Observations of vertical wind shear heterogeneity in convective boundary layers[J].Monthly Weather Review, 135(3): 843-861.
[5]Stanley G B, Barry E S, Eduard J S, et a1, 2004.The value of wind profiler data in U.S.weather forecasting[J].Bulletion of the American Metrological Society, 85(12): 1871-1886.
[6]程勰, 2012.高原气象特点和航空气象保障的对策[J].科技向导, 28 (11): 335.
[7]费海燕, 周小刚, 王秀梅, 2016.多普勒雷达中气旋判据及算法的发展与应用[J].气象科技进展, 6(5): 24-29.
[8]冯天力, 周杰, 范琪, 等, 2019.应用于民航机场风切变探测与预警的三维激光雷达[J].光子学报, 48(5): 1-11.
[9]郭智亮, 谢文锋, 钟加杰, 等, 2019.广州白云机场一次微下击暴流引起的低空风切变过程分析[J].沙漠与绿洲气象, 13(4): 71-78.
[10]李秀连, 付强, 王科, 等, 2010.风切变对飞行的影响及其预报时效分析[J].气象科技, 38(2): 170-174.
[11]刘苗, 2019.严重风切变, 两度失速警告!首航飞机起落架断裂备降深圳真相查明[Z/OL].(2019-04-06) [2019-11-21].https: //m.mp.oeeee.com/a/BAAFRD000020190406150514.html.
[12]慕熙昱, 徐琪, 夏文梅, 等, 2010.一次强风切变过程的分析及成因讨论[J].高原气象, 29(5): 1289-1296.
[13]邵玲玲, 孙婷, 邬锐, 等, 2005.多普勒天气雷达中气旋产品在强风预报中的应用[J].气象, 31(9): 1324-1328.
[14]寿绍文, 2009.中尺度气象学[M](第二版).北京: 气象出版社, 274-276.
[15]唐民, 庄卫, 2005.低空风切变的探测技术[J].航空气象, (5): 47-49.
[16]王楠, 赵强, 井宇, 等, 2018.秦岭北麓一次冷锋触发的短时强降水成因分析[J].高原气象, 37(5): 1277-1288.DOI: 10.7522/j.issn.1000-0534.2017.00070.
[17]王倩倩, 余晔, 董龙翔, 等, 2020.基于激光测风雷达的兰州冬季风场特征及其与大气污染的关系[J].高原气象, 39(3): 641-650.DOI: 10.7522/j.issn.1000-0534.2019.00009.
[18]王青梅, 郭丽乐, 2012.激光雷达在机场低空风切变探测中的应用[J].激光与红外, 42(12): 1324-1328.
[19]王世杰, 2013.青海省西宁机场风切变的初步分析[J].北京农业(9): 137-138.
[20]吴芳芳, 俞小鼎, 张志刚, 等, 2012.对流风暴内中气旋特征与强烈天气[J].气象, 38(11): 1330-1338.
[21]吴蕾, 陈洪滨, 康雪, 2014.风廓线雷达与L波段雷达探空测风对比分析[J].气象科技, 42(2): 225-229.
[22]杨富燕, 张宁, 朱莲芳, 等, 2016.基于激光雷达和微波辐射计观测确定混合层高度方法的比较[J].高原气象, 35(4): 1102-1111.DOI: 10.7522/j.issn.1000-0534.2015.00045.
[23]张涛, 李柏, 杨洪平, 等, 2013.三次雷暴导致的阵风锋过程分析[J].气象, 39(10): 1275-1283.
[24]张小雯, 郑永光, 吴蕾, 等, 2017.风廓线雷达资料在天气业务中的应用现状与展望[J].气象科技, 45(2): 285-297.
[25]章澄昌, 2008.飞行气象学[M].第二版, 北京: 气象出版社, 122.
[26]郑媛媛, 朱红芳, 方翔, 等, 2009.强龙卷超级单体风暴特征分析与预警研究[J].高原气象, 28(3): 617-625.
[27]朱国富, 陈受钧, 1999.1995年夏季青藏高原上及其邻域对流活动[J].高原气象, 18(1): 9-19.