Temporal and Spatial Characteristics of Water Vapor and Cloud Water over the Qinghai-Xizang Plateau in Summer

  • Xiaohong HE ,
  • Minhong SONG ,
  • Zixuan ZHOU
Expand
  • <sup>1.</sup>School of Atmospheric Sciences,Chengdu University of Information Technology / Plateau Atmosphere and Environment Key Laboratory if Sichuan Province,Chengdu 610225,Sichuan,China;<sup>2.</sup>Xinghai County Meteorological Bureau,Hainan 813300,Qinghai,China

Received date: 2019-09-12

  Online published: 2020-12-28

Abstract

In order to reveal the distribution of water vapor and cloud water in summer over the Qinghai-Xizang Plateau, based on the ERA-Interim monthly reanalysis data from ECMWF the temporal and spatial characteristics of total column water vapor, water vapor flux and total column cloud water over the plateau in summer from 1979 to 2016 were studied by EOF analysis and correlation analysis methods.The main conclusions are as follows: (1)The variation range of total column water vapor over the plateau in summer is 2~25 kg·m-2.It decreases from the southeast of the plateau to the northwest.Its variation trend increases in summer from 1979 to 2016.(2) The total column water vapor flux over the plateau is positive in summer during 1979-2016.And the water vapor is mainly transported eastward.The most areas of the plateau are the weak convergence areas of the water vapor with net water vapor obtained.Except for the south boundary of the plateau, the rest surrounding areas are the divergence areas of water vapor with net water vapor lost.(3) The distribution of the maximum value of total column cloud water is mainly in the south wing of Himalayas and the southeast of the plateau.The total column cloud water over the plateau increases with the rate of 1.9 g·m-2·(10a)-1 in summer.(4) During the summer of 1979-2016, the averaged total column water vapor over the plateau increases with the rate of 0.3 kg·m-2·(10a)-1; The meridional net water vapor budget increases, while the zonal one decrease, so the trend of the regional net water budget is not obvious.

Cite this article

Xiaohong HE , Minhong SONG , Zixuan ZHOU . Temporal and Spatial Characteristics of Water Vapor and Cloud Water over the Qinghai-Xizang Plateau in Summer[J]. Plateau Meteorology, 2020 , 39(6) : 1339 -1347 . DOI: 10.7522/j.issn.1000-0534.2019.00135

References

[1]Jones P D, Raper S C B, Bradley R S, et al, 1986.Northern Hemisphere surface air temperature variations: 1851-1984[J].Journal of Climate and Applied Meteorology, 25(2): 161-179.
[2]Liu X D, Chen B D, 2000.Climatic warming in the Tibetan Plateau during recent decades[J].International Journal of Climatology, 20(14): 1729-1742.
[3]Wang C H, Yu L, Huang B, 2012.The impact of warm pool SST and general circulation on increased temperature over the Tibetan Plateau[J].Advance of Atmospheric Sciences, 29(2): 274-284.
[4]Wu G X, Liu Y M, He B, et al, 2012.Thermal controls on the Asian summer monsoon[J].Scientific Reports, 2: 404.DOI: 10.1038/srep00404.
[5]白磊, 王维霞, 姚亚楠, 等, 2013.ERA-Interim和NCEP/NCAR 再分析数据气温和气压值在天山山区适用性分析[J].沙漠与绿洲气象, 7(3): 51-56.
[6]蔡淼, 2013.中国空中云水资源和降水效率的评估研究[D].北京: 中国气象科学研究院, 1-124.
[7]段玮, 段旭, 徐开, 等, 2015.从水汽角度对青藏高原东南侧高空探测布局的分析[J].高原气象, 34(2): 307-317.DOI: 10.7522/j.issn.1000-0534.2014.00024.
[8]冯蕾, 魏凤英, 2008.青藏高原夏季降水的区域特征及其与周边地区水汽条件的配置[J].高原气象, 27(3): 491-499.
[9]韩军彩, 周顺武, 吴萍, 等, 2012.青藏高原上空夏季水汽含量的时空分布特征[J].干旱区研究, 29(3): 457-463.
[10]黄嘉佑, 2016.气象统计分析与预报方法(第四版)[M].北京: 气象出版社.
[11]黄荣辉, 张振洲, 黄刚, 等, 1998.夏季东亚季风区水汽输送特征及其与南亚季风区水汽输送的差别[J].大气科学, 22(4): 460-469.
[12]李兴宇, 郭学良, 朱江, 2008.中国地区空中云水资源气候分布特征及变化趋势[J].大气科学, 32(5): 1094-1106.DOI: 10. 3878/j.issn.1006-9895.2008.05.09.
[13]刘朝顺, 吕达仁, 杜秉玉, 2006.地基遥感大气水汽总量和云液态水总量的研究[J].南京气象学院学报, 29(5): 606-612.
[14]刘菊菊, 游庆龙, 王楠, 2019.青藏高原夏季云水含量及其水汽输送年际异常分析[J].高原气象, 38(3): 449-459.DOI: 10. 7522/j.issn.1000-0534.2018.00138.
[15]刘菊菊, 游庆龙, 周毓荃, 等, 2018.基于 ERA-Interim 的中国云水量时空分布和变化趋势[J].高原气象, 37(6): 1590-1604.DOI: 10.7522/j.issn.1000-0534.2018.00059.
[16]潘留杰, 张宏芳, 朱伟军, 等, 2013.ECMWF 模式对东北半球气象要素场预报能力的检验[J].气候与环境研究, 18(1): 111-123.DOI: 10.3878/j.issn.1006-9585.2012.11097.
[17]石晓兰, 杨青, 姚俊强, 等, 2016.基于ERA-Interim资料的中国天山山区云水含量空间分布特征[J].沙漠与绿洲气象, 10(2): 50-56.DOI: 10.3969/j.issn.1002-0799.2016.02.008.
[18]王彬宇, 范广洲, 周定文, 2014.青藏高原夏季水汽输送特征分析[J].长江流域资源与环境, 23(增刊): 21-29.
[19]王浩, 王建华, 2012.中国水资源与可持续发展[J].中国科学院院刊, 27: 352-357.DOI: 10.3969/j.issn.1000-3045. 2012. 03.014.
[20]王霄, 巩远发, 岑思弦, 2009.夏半年青藏高原“湿池”的水汽分布及水汽输送特征[J].地理学报, 64(5): 601-608.
[21]谢欣汝, 游庆龙, 保云涛, 等, 2018.基于多源数据的青藏高原夏季降水与水汽输送的联系[J].高原气象, 37(1): 78-92.DOI: 10.7522/j.issn.1000-0534.2017.00030.
[22]徐祥德, 陶诗言, 王继志, 等, 2002.青藏高原: 季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系[J].气象学报, 60(3): 257-266.
[23]杨冰韵, 吴晓京, 郭徵, 2017.基于 CloudSat 资料的中国地区深对流云物理特征研究[J].高原气象, 36(6): 1655-1664.DOI: 10.7522/j.issn.1000-0534.2017.00006.
[24]杨大生, 王普才, 2012.中国地区夏季 6-8 月云水含量的垂直分布特征[J].大气科学, 36(1): 89-101.DOI: 10.3878/j.issn. 1006-9895.2012.01.08.
[25]张新主, 2011.西南地区水汽输送特征分析[D].长沙: 湖南师范大学.
[26]周顺武, 吴萍, 王传辉, 等, 2011.青藏高原夏季上空水汽含量演变特征及其与降水的关系[J].地理学报, 66(11): 1466-1478.
[27]周长艳, 蒋兴文, 李跃清, 等, 2009.高原东部及邻近地区空中水汽资源的气候变化特征[J].高原气象, 28(1): 55-63.
[28]周长艳, 唐信英, 李跃清, 2012.青藏高原及周边地区水汽、 水汽输送相关研究综述[J].高原山地气象研究, 32(3): 76-83.
Outlines

/