In this paper, in order to better investigate the process of squall line, the national automatic weather stations and CMORPH product at 0.1°×0.1° resolution、NCEP(National Centers for Environmental Precipitation) 1°×1° reanalysis meteorological data、regular observation data and high-resolution WRF numerical simulation data are used to analyze the dynamic and thermal environmental conditions of the upscaling growth process of a squall line in south China around April 13, 2016.Before the formation of the squall line, there is a upper-level jet stream in the upper troposphere.South China is located on the right side of the entrance of the upper-level jet stream.There is a weak height trough in the upper level, and the temperature trough lags behind the height trough, which is beneficial to the development of the height trough.There is a low-pressure system on the surface and There is convergence of airflow in the low level of south China, which enhances the lifting movement.The simulation results show that The WRF model successfully simulates the upscale process of squall line, and the precipitation and the falling area of the squall line are relatively close.At the same time, compared with the previous squall lines, the convective available potential energy during the upscaling phase is higher than the initial convection phase, but the convective available potential energy in the entire south China region is at a low and middle level.In addition to the influence of synoptic scale system, the cooperation of various mesoscale conditions is beneficial to the upscaling development of squall line.The triggering conditions are vertical wind shear, low potential vorticity (PV) and high temperature declining rate in the lower level, which provide certain unstable conditions and lifting conditions.Low-level wind field turning and wind velocity strengthening, changes in the direction of vertical wind shear, sufficient water vapor supply and deepening of the rear inflow enhance instability and vertical lifting motion, which are important conditions for promoting the upscale growing of meso-β-scale squall line.The cold pool is not obvious during the upscale growing, but the cold pool is important for maintaining the meso-α-scale squall line structure in the mature stage.
Lin WANG
,
Xinyong SHEN
,
Yong WANG
,
Chi ZHANG
,
Yongqing WANG
,
Xiaofan LI
. Mechanism Analysis of a Squall Line Upscale Growing Process in South China[J]. Plateau Meteorology, 2021
, 40(1)
: 145
-158
.
DOI: 10.7522/j.issn.1000-0534.2019.00127
[1]Fujita T, 1955.Results of detailed synoptic studies of squall lines[J].Tellus, 7(4): 405-436.
[2]Fujita T, 1963.Analytical mesometeorology: A review[J].Meteorological Monographs, 5(27): 77-125.
[3]Houze R A, Biggerstaff M I, Rutledge S A, et al, 1989.Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems[J].Bulletin of the American Meteorological Society, 70(6): 608-619.
[4]Meng Z Y, Zhang F Q, Markowski P, et al, 2012.A modeling study on the development of a bowing structure and associated rear inflow within a squall line over south China[J].Journal of the Atmospheric Sciences, 69(4): 1182-1207.
[5]Meng Z Y, Yan D C, Zhang Y J, 2013.General features of squall lines in east China[J].Monthly Weather Review, 141(5): 1629-1647.
[6]Newton C W, 1950.Structure and mechanism of the prefrontal squall line[J].Journal of Meteorology, 7(3): 210-222
[7]Newton C W, 1966.Circulations in large sheared cumulonimbus[J].Tellus, 18(4): 699-713.
[8]Parker M D, Johnson R H, 2000.Organizational modes of midlatitude mesoscale convective [J].Monthly Weather Review, 128: 3431-3436.
[9]Rotunno R, Klemp J B, Weisman M L, 1988.A theory for strong, long-lived squall lines[J].Journal of the Atmospheric Sciences, 45(3): 463-485.
[10]Weisman M L, 1992.The role of convectively generated rear inflow jets in the evolution of long-lived mesoconvective systems[J].Journal of the Atmospheric Sciences, 49: 1826-1847.
[11]Zhang D L, Gao K, Parsons D B, 1989.Numerical simulation of an intense squall line during 10-11 June 1985 PRE-STORM.Part I: Model verification [J].Monthly Weather Review, 117: 960-994.
[12]陈明轩, 王迎春, 2012.低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J].气象学报, 70(3): 371-386.
[13]丁一汇, 李鸿洲, 章名立, 等, 1982.我国飑线发生条件的研究[J].大气科学, 6(1): 18-27.
[14]李娜, 冉令坤, 高守亭, 2013.华东地区一次飑线过程的数值模拟与诊断分析 [J].大气科学, 37 (3): 595-608.
[15]马申佳, 陈超辉, 何宏让, 等, 2018.基于BGM的对流尺度集合预报试验及其检验[J].高原气象, 37(2): 495-504.DOI: 10. 7522/j.issn.1000-0534.2017.00073.
[16]沈新勇, 岳俗甲, 刘佳, 等, 2016.凝结潜热释放和地表热通量对一次飑线过程的影响 [J].气象科学, 36 (6): 709-720.
[17]寿绍文, 励申申, 姚秀萍, 2003.中尺度气象学(第三版)[M].北京: 气象出版社, 3-5.
[18]陶局, 易笑园, 赵海坤, 等, 2019.一次飑线过程及其受下垫面影响的数值模拟[J].高原气象, 38(4): 756-772.DOI: 10.7522/j.issn.1000-0534.2019.00035.
[19]席乐, 闵锦忠, 王仕奇, 2018.一次华南强飑线过程的数值模拟及后方入流作用诊断[J].气象科学, 38( 6): 739-748.
[20]姚晨, 戴娟, 刘晓蓓, 2013.江淮流域长生命史飑线的特征分析与临近预警[J].气象科学, 33(5): 577-583.
[21]章国才, 2001.强对流天气分析与预报[M].北京: 气象出版社.
[22]翟丽萍, 农孟松, 赖珍权, 等, 2018.广西“4·20”暖区飑线的形成及结构[J].高原气象, 37(2): 568-576.DOI: 10.7522/j.issn. 1000-0534.2017.00058.
[23]张弛, 王咏青, 廖玥, 等, 2019.初始场与云微物理参数方案在飑线数值模拟中的对比研究[J].高原气象, 38(2): 410-420.DOI: 10.7522/j.issn.1000-0534.2018.00084.
[24]张健宏, 2004.风暴相对螺旋度的应用[J].陕西气象, 47(3): 5-7.
[25]张腾飞, 张杰, 张思豆, 等, 2018.云南南支槽飑线雹暴中尺度特征及环境条件[J].高原气象, 37(4): 958-969.DOI: 10.7522/j.issn.1000-0534.2017.00093.
[26]朱乾根, 林锦瑞, 寿绍文, 等, 2007.天气学原理和方法(第四版)[M].北京: 气象出版社, 407-415.