Analysis of Prediction Method for Rainfall and Superposition Rainfall

  • Tao SHU ,
  • Tangjin YE ,
  • Junjie LI ,
  • Hao LI
Expand
  • <sup>1.</sup>College of Engineering,Tibet University,Lhasa 850000,Tibet,China;<sup>2.</sup>Department of Construction Engineering,Dalian University of Technology,Dalian 116024,Liaoning,China

Received date: 2019-10-14

  Online published: 2021-02-28

Abstract

In order to obtain High-precision rainfall predictive value and Superposition Prediction, Wavelet Neural Network and NARX Dynamic Neural Network methods are used to provide prediction of rainfall trends, rainfall amounts, and also to analyze the error of the superposed predictive value of rainfall.The results shows that the Wavelet Neural Network provide accurately in analyzing the monthly rainfall multiple variation periods and the overall variation trend; as the error test value of NARX Dynamic Neural Network prediction model is 0.21%, the correlation coefficient R of regression renderings is 0.99993, and feedback and test error value are only 0.22% and 0.40% respectively; the errors of superposed prediction and test of rainfall are small, less than 2%, which can meet the requirement of continuous superposed prediction of rainfall.This method will provide high-precision predictive value of rainfall for the prediction of slope dynamic stability.

Cite this article

Tao SHU , Tangjin YE , Junjie LI , Hao LI . Analysis of Prediction Method for Rainfall and Superposition Rainfall[J]. Plateau Meteorology, 2021 , 40(1) : 169 -177 . DOI: 10.7522/j.issn.1000-0534.2020.00014

References

[1]Breiman L, 2001.Random Forests [J].Machine Learning, 45(1): 5-32.
[2]Guzman S M, Paz J O, Tagert M L, 2017.The use of NARX neural networks to forecast daily groundwater levels [J].Water Resources Managemen, 31(5): 1591-1603.
[3]Renuga D S, Arulmozhivarman P, Venkatesh C, et al, 2016.Performance comparison of artificial neural network models for daily rainfall prediction [J].International Journal of Automation and Computing, 13(5): 417-427.
[4]Shen H Y, Chang L C, 2013.On-line multistep-ahead inundation depth forecasts by recurrent NARX Networks [J].Hydrology and Earth System Sciences, 17(3): 935-945.
[5]Trushnamayee N, Bhabagrahi S, Harsh B, et al, 2016.A Wavelet-Based Non-linear Autoregressive with Exogenous Inputs (WNARX) Dynamic Neural Network Model for real-time flood forecasting using satellite-based rainfall products[J].Journal of Hydrology, 539(8): 57-73.
[6]Zhang Q H, Albert B, 1992.Welet network [J].Transactions on Neural Network, 3(6): 889-898.
[7]Zhoobin R, Helmi Z, Mohd S, et al, 2018.A GNSS-based weather forecasting approach using Nonlinear Auto Regressive Approach with Exogenous Input (NARX) [J].Journal of Atmospheric and Solar-Terrestrial Physics, 176(10): 74-84.
[8]程敏, 张耀文, 姜纪沂, 等, 2019.基于时间序列模型的降雨量预测分析[J].水科学与工程技术(1): 1-5.
[9]崔屾, 迟道才, 孟丽丽, 等, 2008.基于小波神经网络的年降水量预测模型研究[J].人民长江(20): 55-57.
[10]董法, 郭忠林, 柳群荣, 等, 2019.降雨条件下边坡稳定性评价方法研究[J].化工物与加工, 48(8): 32-35, 40.
[11]范莹莹, 余思勤, 2015.基于NARX神经网络的港口集装箱吞吐量预测[J].上海海事大学学报, 36(4): 1-5.
[12]付立华, 王刚, 魏林宏, 2015.采用遗传算法的小波神经网络在降雨量预测中的应用[J].河南工程学院学报(自然科学版), 27(1): 53-57.
[13]寇尔丹, 2014.基于小波神经网络的朝阳降水预测模型研究[J].东北水利水电, 32(6): 27-29, 72.
[14]李明, 杨汉生, 杨成梧, 等, 2006.一种改进的NARX回归神经网络[J].电气自动化, 28(4): 6-8, 11.
[15]李云, 2016.改进的小波神经网络结构优化算法及其应用研究[D].重庆: 西南大学.
[16]刘江涛, 徐宗学, 赵焕, 等, 2019.不同降水卫星数据反演降水量精度评价——以雅鲁藏布江流域为例[J].高原气象, 38(2): 386-396.DOI: 10.7522/j.issn.1000-0534.
[17]刘田, 阳坤, 秦军, 等, 2018.青藏高原中、 东部气象站降水资料时间序列的构建与应用[J].高原气象, 37(6): 1449-1457.DOI: 10.7522/j.issn.1000-0534.2018.00060.
[18]刘亚秋, 马广富, 石忠, 2005.NARX网络在自适应逆控制动态系统辨识中的应用[J].哈尔滨工业大学学报, 37(2): 173-176.
[19]卢彬, 刘茜, 高林, 等, 2019.基于NARX神经网络的锅炉壁温预测模型[J].热力发电, 48(3): 35-40.
[20]马艳鲜, 余忠水, 2009.西藏泥石流、 滑坡时空分布特征及其与降水条件的分析[J].高原山地气象研究, 29(1): 55-58.
[21]邵月红, 张万昌, 刘永和, 等, 2009.BP神经网络在多普勒雷达降水量的估测中的应用[J].高原气象, 28(4): 846-853.
[22]舒建川, 蒋兴文, 黄小梅, 等, 2019.中国西南夏季降水预测的统计降尺度建模分析[J].高原气象, 38(2): 349-358.DOI: 10. 7522/j.issn.1000-0534.2018.00078.
[23]苏莉, 齐勇, 金玲玲, 等, 2013.基于非线性多参数模型的软件老化检测[J].计算机科学, 40(1): 161-165, 170.
[24]孙国祥, 闫婷婷, 汪小旵, 等, 2014.基于小波变换和动态神经网络的温室黄瓜蒸腾速率预测[J].南京农业大学学报, 37(5): 143-152.
[25]陶猛, 徐淑琴, 2013.时间序列小波神经网络组合模型在年降雨量预测中的应用[J].节水灌溉(12): 40-42, 45.
[26]张丹琦, 孙凤华, 张耀存, 2019.基于BCC第二代短期气候预测模式系统的中国夏季降水季节预测评估[J].高原气象, 38(6): 1229-1240.DOI: 10.7522/j.issn.1000-0534.2018.00149.
[27]张国彬, 2006.小波神经网络算法的改进与应用[D].福州: 福州大学.
[28]张和喜, 黄维, 梁俐, 等, 2019.基于小波分析的红枫湖年径流变化研究[J].科技通报, 35(3): 31-38.
[29]周海赟, 闫冬梅, 2019.基于SSARX-NARX模型的短时交通流预测[J].交通信息与安全, 37(4): 89-95.
[30]周莉, 兰明才, 蔡荣辉, 等, 2019.转移累计概率分布(CDF-t)统计降尺度方法对湖南极端降水的模拟评估[J].高原气象, 38(4): 734-743.DOI: 10.7522/j.issn.1000-0534.2018.00122.
[31]朱庆辉, 勾翔宇, 2019.基于小波神经网络的上海港集装箱吞吐量预测[J].中国水运(6): 25-27.
[32]朱跃龙, 李士进, 范青松, 等, 2011.基于小波神经网络的水文时间序列预测[J].山东大学学报(工学版), 41(4): 119-124.
Outlines

/