Precipitation and snow cover data in weather observation site in Tibet, NCEP/NCAR reanalysis data and sea surface temperature data from NOAA are used to analyze the large-scale circulation and influence factors resulting in precipitation anomaly in winter in the Northern Tibet.Results show that there is a periodic variation with 2~4 years in winter precipitation in the Northern Tibet, and 3 years period is the strongest.In more rain years, a west-negative and east-positive spatial distribution of geopotential height anomaly at 500 hPa level is shown over the mid-high latitudes of the Eurasian continent from the Ural Mountains to the Lake Baikal nearby.The path of cold air influencing China shifts west.Geopotential height at 500 hPa level over the Tibetan Plateau shows negative anomaly.The Middle East jet stream (MEJS) is stronger than normal.The southern branch of westerly flow around the Tibetan Plateau is stronger than normal, and the southern branch trough is more active.Winter precipitation in the Northern Tibet is closely related to the strength of MEJS.The correlation coefficient between them is up to 0.61.Further analysis shows that the phase of arctic oscillation (AO) has an impact on the path of cold air.Positive phase of AO is conducive to west path of cold air affecting the Tibetan Plateau.Meanwhile, The MEJS is stronger and southern than normal.In addition, warmer sea surface temperature in the central and eastern tropical Pacific is conducive to a stronger and southern MEJS.The synergetic effects of AO and ENSO phase play a key role in the precipitation anomaly in winter in the Northern Tibet.
Ji NIMA
,
Zongjian KE
,
Lijuan CHEN
,
Yangzong CIREN
. Large-Scale Circulation Characteristics and Influence Factors of Winter Precipitation Anomaly in the Northern Tibet[J]. Plateau Meteorology, 2021
, 40(1)
: 28
-36
.
DOI: 10.7522/j.issn.1000-0534.2020.00011
[1]Gong D Y, Wang S W, Zhu J H, 2001.East Asian winter monsoon and Arctic Oscillation[J].Geophysical Research Letters, 28: 2073-2076.
[2]Hong C C, Hsu H H, Chia H H, et al, 2008.Decadal relationship between the North Atlantic oscillation and cold surge frequency in Taiwan[J].Geophysical Research Letters, 35: L24707, DOI: 10.1029/2008GL034766.
[3]Jiang X W, Yang S, Li Y Q, et al, 2013.Dominant modes of wintertime upper-tropospheric temperature variations over Asia and links to surface climate[J].Journal of Climate, 26: 9043-9060.
[4]Kalnay E, Kanamitsu M, Kistler R, et al, 1996.The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 77(2): 437-471.
[5]Si D, Ding Y, 2013. Decadal change in the correlation pattern between the Tibetan Plateau winter snow and the East Asian summer precipitation during 1979 -2011[J].Journal of Climate, 26(19): 7622-7634.
[6]Smith T M, Reynolds R W, Peterson T C, et al, 2008.Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880 -2006)[J].Journal of Climate, 21: 2283-2296.
[7]Watanabe M, 2004.Asian jet waveguide and a downstream extension of the North Atlantic oscillation[J].Journal of Climate, 17: 4674-4691.
[8]Wen M, Yang S, Kumar A, et al, 2009.An analysis of the large-scale climate anomalies associated with the snowstorm affecting China in January 2008[J].Monthly Weather Review, 137: 1111-1131.
[9]Wu B, Wang J, 2002.Possible impact of winter Arctic Oscillation on Siberian High, the East Asian winter monsoon and sea-ice extent[J].Advance in Atmospheric Sciences, 19: 297-320.
[10]Yang S, Lau K M, Yoo S H, et al, 2004.Upstream subtropical signals preceding the Asian Summer monsoon circulation[J].Journal of Climate, 17: 4213-4229.
[11]Zhu Y, Liu H, Ding Y, et al, 2015. Interdecadal variation of spring snow depth over the Tibetan Plateau and its influence on summer rainfall over East China in the recent 30 years[J].International Journal of Climatology, 35(12): 3654-3660.
[12]保云涛, 游庆龙, 谢欣汝, 2018.青藏高原积雪时空变化特征及年际异常成因[J].高原气象, 37(4): 899-910.DOI: 10.7522 /j.issn.1000-0534.2017.00099.
[13]蔡学湛, 吴滨, 2005.青藏高原雪盖异常的环流特征及其与我国夏季降水的关系[J].应用气象学报, 16(1): 89-95.
[14]陈烈庭, 1998.青藏高原冬春季异常雪盖与江南前汛期降水关系的检验和应用[J].应用气象学报, 9(增刊): 1-8.
[15]德庆卓嘎, 罗布次仁, 尼琼, 等, 2010.西藏地区气象灾情成因分析与统计[J].西藏科技(2): 61-63.
[16]董文杰, 韦志刚, 范丽军, 2001.青藏高原东部牧区雪灾的气候特征分析[J].高原气象, 20(4): 402-406.
[17]范广洲, 罗四维, 吕世华, 1997.青藏高原冬季积雪异常对东、 南亚夏季风影响的初步数值模拟研究[J].高原气象, 16(2): 140-152.
[18]黄晓清, 唐叔乙, 次旺顿珠, 2018. 气候变暖背景下西藏高原雪灾变化及其与大气环流的关系[J].高原气象, 37(2): 325-332. DOI: 10.7522 /j.issn.1000-0534.2017.00038.
[19]黄晓清, 杨勇, 石磊, 2013.西藏高原不同时段雪灾的空间分布及大气环流特征[J].中国沙漠, 33(2): 396-402.
[20]假拉, 杜军, 边巴扎西, 等, 2008.西藏气象灾害区划研究[M].北京: 气象出版社, 21-26.
[21]李燕, 闫加海, 张冬峰, 2018.青藏高原冬春积雪异常和中国东部夏季降水关系的诊断与模拟[J].高原气象, 37(2): 317-324.DOI: 10.7522 /j.issn.1000-0534.2017.00040.
[22]梁潇云, 钱正安, 李万元, 2002.青藏高原东部牧区雪灾的环流型及水汽场分析[J].高原气象, 21(4): 360-364.
[23]刘玉莲, 任国玉, 于宏敏, 等, 2013.我国强降雪气候特征及其变化[J].应用气象学报, 24(3): 304-313.
[24]马林, 李锡福, 张青梅, 等, 2001.青藏高原东部牧区冬季雪灾天气的形成及其预报[J].高原气象, 20(3): 325-330.
[25]毛睿, 龚道溢, 房巧敏, 2007.冬季东亚中纬度西风急流对我国气候的影响[J].应用气象学报, 18(2): 137-146.
[26]倪东鸿, 2010.中东急流(MEJS)的变化特征及其对中国冬季气候的影响[D].南京: 南京信息工程大学, 64-70.
[27]孙秀忠, 罗勇, 张霞, 等, 2010.近46年来我国降雪变化特征分析[J].高原气象, 29 (6): 1594-1601.
[28]谭桂容, 王腾飞, 2014.2011/2012年冬季中国气温异常的成因及前兆信号[J].大气科学学报, 37(1): 65-74.
[29]王澄海, 李燕, 王艺, 2015.北半球大气环流及其冬季风的年代际变化对青藏高原冬季降雪的影响[J].气候与环境研究, 20(4): 421-432.
[30]王顺久, 2017.青藏高原积雪变化及其对中国水资源系统影响研究进展[J].高原气象, 36(5): 1153-1164.DOI: 10.7522/j.issn. 1000-0534.2016.00117.
[31]王兴, 2006.西藏牧区雪灾防御研究的进展及其展望[J]. 西藏科技(10): 59-61.
[32]温克刚, 刘光轩, 2008.中国气象灾害大典: 西藏卷[M].北京: 气象出版社, 51-52.
[33]谢志辉, 罗勇, 1999.青藏高原雪盖变化对我国气候的影响[J].应用气象学报.10(增刊): 122-131.
[34]徐国昌, 李珊, 洪波, 1994.青藏高原雪盖对我国环流和降水的影响[J].应用气象学报, 5(1): 62-67.
[35]徐兴奎, 陈红, 周广庆, 2005.青藏高原地表特征时空分布[J].气候与环境研究, 10(3): 409-420.
[36]宇婧婧, 刘屹岷, 李晓峰, 2014. 冬季青藏高原上游西风模态与中国降水及NAO的关联[J].高原气象, 33(4): 877-886.DOI: 10.7522 /j.issn.1000-0534.2013.00108.
[37]宇婧婧, 刘屹岷, 吴国雄, 2011. 冬季青藏高原上空热状况的分析—II年际变化[J]. 气象学报, 69(1): 89-98.
[38]张顺利, 陶诗言, 2001.青藏高原积雪对亚洲夏季风影响的诊断及数值研究[J].大气科学, 25(3): 372-390.
[39]周陆生, 李海红, 汪青春, 2000.青藏高原东部牧区大—暴雪过程及雪灾分布的基本特征[J].高原气象, 19(4): 451-457.
[40]邹志伟, 2011.西藏雪灾对高原牧业的影响探析(1824-1957)[J].西北大学学报(自然科学版), 41(6): 1059 -1063.