Investigating the spatiotemporal patterns of temperature lapse rates and precipitation gradients can contribute to a better understanding of the physiological and ecological mechanism controlling the altitudinal zonality of plants and animals in the Sygera Mountains, and can also provide reliable parameters for future hydrological modelling in basins of the region.The regression analysis between air temperature and elevation and between precipitation and elevation is conducted based on the daily air temperature and precipitation (from April to October) observations from 11 meteorological stations in the Sygera Mountains.The results show that: (1) The multiyear average annual air temperature lapse rate of the Sygera Mountains has relatively small interannual variation (from 2013 to 2018) with the averaged lapse rates as 0.71, 0.55 and 0.60 ℃·(100m)-1 for the western, the eastern and the both slopes, respectively.(2) As for seasonal variation, the air temperature lapse rate is relatively steep in winter and spring, and relatively shallow in summer and autumn.As a whole, the air temperature lapse rate of the Sygera Mountains is relatively shallow during the monsoon season (from June to September) under the strong influence of the Indian monsoon, and this is consistent with the findings in other parts of the Tibetan Plateau where similar impacts from the Indian monsoon can be observed.(3) The comparison between slopes shows that the temperature lapse rate of the western slope is always steeper than that of the eastern slope in the same period, which could be linked with the less precipitation of the western slope compared with the eastern slope.(4) The correlation between annual precipitation (from 2013 to 2018) and elevation on the western slope is not statistically significant, whereas the correlation is indeed significant for the eastern slope, with the multiyear average annual precipitation gradient as 10.5 mm·(100m)-1.(5) In terms of the comparison of the precipitation gradients between the monsoon and the non-monsoon periods, the situation is very complex.On the western slope, the precipitation increases with the elevation in the non-monsoon period, but does not show obvious trend with elevation in the monsoon period.On the eastern slope no obvious trends of precipitation with elevation are found in either the monsoon or the non-monsoon periods.There is an elevation band with relatively low precipitation in the middle-elevation area of the Sygera Mountains in both the western (3035~3698 m) and the eastern slopes (3326~3390 m).However, it should be noted that in the high-elevation areas the precipitation consistently increases with elevation for the both periods and the both slopes.
Lun LUO
,
Zeng DAN
,
Liping ZHU
,
Hongbo ZHANG
. Vertical Gradient Changes of Temperature and Precipitation in the Sygera Mountains, Southeastern Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2021
, 40(1)
: 37
-46
.
DOI: 10.7522/j.issn.1000-0534.2019.00123
[1]Guo X Y, Wang L, Tian L D, 2016.Spatio-temporal variability of vertical gradients of major meteorological observations around the Tibetan Plateau [J].International Journal of Climatology, 36(4): 1901-1916.DOI: 10.1002/joc.4468.
[2]Houze R A, 2012.Orographic effects on precipitating clouds [J].Reviews of Geophysics, 50(1): RG1001.DOI;10.1029/2011RG000365.
[3]Immerzeel W W, Petersen L, Ragettli S, et al, 2014.The importance of observed gradients of air temperature and precipitation for modeling runoff from a glacierized watershed in the Nepalese Himalayas [J].Water Resources Research, 50(3): 2212-2226.
[4]Kattel D B, Yao T D, 2013.Recent temperature trends at mountain stations on the southern slope of the central Himalayas [J].Journal of Earth System Science, 122(1): 215-227.DOI: 10.1007/s12040-012-0257-8.
[5]Kattel D B, Yao T D, Yang W, et al, 2015.Comparison of temperature lapse rates from the northern to the southern slopes of the Himalayas [J].International Journal of Climatology, 35(15): 4431-4443.DOI: 10.1002/joc.4297.
[6]Kattel D B, Yao T D, Panday P K, 2018.Near-surface air temperature lapse rate in a humid mountainous terrain on the southern slopes of the eastern Himalayas [J].Theoretical and Applied Climatology, 132(3/4): 1129-1141.DOI: 10.1007/s00704-017-2153-2.
[7]Liang E Y, Liu B, Zhu L P, et al, 2011.A short note on linkage of climatic records between a river valley and the upper timberline in the Sygera Mountains, southeastern Tibetan Plateau [J].Global Planet Change, 77(1/2): 97-102.
[8]Liang E Y, Wang Y F, Piao S L, et al, 2016.Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau [J].Proceedings of the National Academy of Sciences, USA, 113(16): 4380-4385.DOI: 10.1073/pnas.1520582113.
[9]Lu X M, Camarero J J, Wang Y F, et al, 2015.Up to 400-year-old Rhododendron shrubs on the southeastern Tibetan Plateau: Prospects for shrub-based dendrochronology [J].Boreas, 44(4): 760-768.DOI: 10.1111/bor.12122.
[10]Putkonen J K, 2004.Continuous snow and rain data at 500 to 4400 m altitude near Annapurna, Nepal, 1999 -2001 [J].Arctic Antarctic and Alpine Research, 36(2): 244-248.DOI: 10.1657/1523-0430(2004)036[0244: CSARDA]2.0.CO;2.
[11]Shen W, Zhang L, Guo Y, et al, 2018.Causes for treeline stability under climate warming: Evidence from seed and seedling transplant experiments in southeast Tibet [J].Forest Ecology and Management, 408: 45-53.DOI: 10.1016/j.foreco.2017.10.025.
[12]Wang K L, Sun J, Cheng G D, et al, 2011.Effect of Altitude and Latitude on Surface Air Temperature across the Qinghai-Tibet Plateau [J].Journal of Mountain Science, 8(6): 808-816.DOI: 10.1007/s11629-011-1090-2.
[13]Wang L, Chen R S, Song Y X, et al, 2018.Precipitation-altitude relationships on different timescales and at different precipitation magnitudes in the Qilian Mountains [J].Theoretical and Applied Climatology, 134(3/4): 875-884.DOI: 10.1007/s00704-017-2316-1.
[14]Wang L, Sun L T, Shrestha M, et al, 2016.Improving snow process modeling with satellite-based estimation of near-surface-air-temperature lapse rate [J].Journal of Geophysical Research: Atmospheres, 121(20): 12005-12030.DOI: 10.1002/2016JD025506.
[15]Wang Y F, Pederson N, Ellison A M, et al, 2016.Increased stem density and competition may diminish the positive effects of warming at alpine treeline [J].Ecology, 97(7): 1668-1679.DOI: 10. 1890/15-1264.1.
[16]Wang Y W, Wang L, Li X P, et al, 2018.Temporal and spatial changes in estimated near‐surface air temperature lapse rates on Tibetan Plateau [J].International Journal of Climatology, 38(7): 2907-2921.DOI: 10.1002/joc.5471.
[17]Yang X X, Xu B Q, Yang W, et al, 2009.Study of altitudinal lapse rates of <i>δ</i><sup>18</sup>O in precipitation/river water with seasons on the southeast Tibetan Plateau [J].Chinese Science Bulletin, 54(16): 2742-2750.DOI: 10.1007/s11434-009-0496-5.
[18]Yu W S, Xu B Q, Lai C T, et al, 2014.Influences of relative humidity and Indian monsoon precipitation on leaf water stable isotopes from the southeastern Tibetan Plateau [J].Geophysical Research Letters, 41(21): 7746-7753.DOI: 10.1002/2014GL062004.
[19]Zhang F, Zhang H B, Hagen S C, et al, 2015.Snow cover and runoff modelling in a high mountain catchment with scarce data: Effects of temperature and precipitation parameters [J].Hydrological Processes, 29(1): 52-65.DOI: 10.1002/hyp.10125.
[20]Zhang H B, Zhang F, Zhang G Q, et al, 2018.How accurately can the air temperature lapse rate over the Tibetan Plateau be estimated from MODIS LSTs? [J].Journal of Geophysical Research Atmospheres, 123(D24): 3943-3960.DOI: 10.1002/2017JD028243.
[21]常姝婷, 刘玉芝, 华珊, 等, 2019.全球变暖背景下青藏高原夏季大气中水汽含量的变化特征[J].高原气象, 38(2): 227-236.DOI: 10.7522/j.issn.1000-0534.2018.00080.
[22]董丹丹, 苏鹏程, 孙铭, 等, 2017.青藏高原东南缘复杂地形条件下降水特征分析[J].人民长江, 48(10): 33-39.DOI: 10.16232/j.cnki.1001-4179.2017.10.008.
[23]杜元宝, 2018.中国西南山地啮齿动物群落多样性海拔梯度格局及机制研究[D].北京: 中国科学院大学.
[24]高登义, 邹捍, 王维, 1985.雅鲁藏布江水汽通道对降水的影响[J].山地研究, 3(4): 239-249.
[25]胡梦玲, 游庆龙, 2019.青藏高原南侧经圈环流变化特征及其对降水影响分析[J].高原气象, 38(1): 14-28.DOI: 10.7522/j.issn.1000-0534.2018.00064.
[26]江净超, 刘军志, 秦承志, 等, 2016.中国近地表气温直减率及其季节和类型差异[J].地理科学进展, 35(12): 1538-1548.DOI: 10.18306/dlkxjz.2016.12.010.
[27]李开明, 钟晓菲, 姜烨, 等, 2018.1961-2016年乌鲁木齐河流域气温和降水垂直梯度变化研究[J].冰川冻土, 40(3): 607-615.DOI: 10.7522 /j.issn.1000-0240.2018.0066.
[28]李巧媛, 谢自楚, 2006.高原区气温垂直递减率的分布及其特点分析——以青藏高原及其周边地区为例[J].石河子大学学报(自然科学版), 24(6): 719-723.DOI: 10.3969/j.issn.1007-7383.2006.06.016.
[29]刘菊菊, 游庆龙, 王楠, 2019.青藏高原夏季云水含量及其水汽输送年际异常分析[J].高原气象, 38(3): 449-459.DOI: 10. 7522 /j.issn.1000-0534.2018.00138.
[30]刘俊峰, 陈仁升, 卿文武, 等, 2011.基于TRMM降水数据的山区降水垂直分布特征[J].水科学进展, 22(4): 447-454.DOI: 32.1309.P.20110709.1619.010.
[31]刘伟刚, 张东启, 柳景峰, 等, 2013.喜马拉雅山中段地区气温直减率变化特征[J].干旱气象, 31(2): 240-245.DOI: 10.11755 /j.issn.1006-7639(2013)-02-0240.
[32]刘新圣, 张林, 孔高强, 等, 2011.藏东南色季拉山急尖长苞冷杉林线地带地上生物量随海拔的变化特征[J].山地学报, 29(3): 362-368.DOI: 10.3969/j.issn.1008-2786.2011.03.014.
[33]鲁春霞, 王菱, 谢高地, 等, 2007.青藏高原降水的梯度效应及其空间分布模拟[J].山地学报, 25(6): 655-663.DOI: 10.3969/j.issn.1008-2786.2007.06.003.
[34]马和平, 郭其强, 刘合满, 等, 2013.西藏色季拉山东麓垂直带土壤碳氮分布特征及其影响因素[J].西北农林科技大学学报(自然科学版), 41(1): 91-96.DOI: 10.13207/j.cnki.jnwafu.2013. 01.014.
[35]秦翔, 杨兴国, 李健, 等, 2013.珠穆朗玛峰北坡地区的气温分布及其垂直梯度分析[J].高原气象, 32(1): 1-8.DOI: 10.7522/j.issn.1000-0534.2012.00001.
[36]卿文武, 韩春坛, 刘俊峰, 等, 2018.祁连山葫芦沟流域气温直减率变化特征 [J].兰州大学学报(自然科学版), 54(1): 44-50.DOI: 10.13885/J.ISSN.045-2059.2018.01.008.
[37]任梅芳, 庞博, 徐宗学, 等, 2018.基于随机森林模型的雅鲁藏布江流域气温降尺度研究[J].高原气象, 37(5): 1241-1253.DOI: 10.7522/j.issn.1000-0534.2018.00026.
[38]孙从建, 李伟, 李新功, 等, 2018.青藏高原西北部近地表气温直减率时空分布特征[J].自然资源学报, 33(7): 1270-1282.DOI: 10.31497/zrzyxb.20170669.
[39]王国严, 罗建, 徐阿生, 等, 2011.西藏色季拉山川滇高山栎种群结构与动态[J].林业科学研究, 24(3): 292-299.
[40]王宁练, 贺健桥, 蒋熹, 等, 2009.祁连山中段北坡最大降水高度带观测与研究[J].冰川冻土, 31(3): 395-403.
[41]谢健, 刘景时, 杜明远, 等, 2009.拉萨河流域高山水热分布观测结果分析[J].地理科学进展, 28(2): 223-230.DOI: 10.11820/dlkxjz.2009.02.009.
[42]辛惠娟, 何元庆, 李宗省, 等, 2012.玉龙雪山东坡气温和降水梯度年内变化特征[J].地球科学(中国地质大学学报), 37(增刊): 188-194.DOI: 10.3799/dqkx.2012.s1.019.
[43]杨梅学, 姚檀栋, Ueno K, 等, 2000.1998年夏季(7, 8月)藏北降水的某些特征分析[J].资源科学, 22(6): 43-46.
[44]姚檀栋, 余武生, 邬光剑, 等, 2019.青藏高原及周边地区近期冰川状态失常与灾变风险[J].科学通报, 64(27): 2770-2782.DOI: 10.1360/TB-2019-0246.
[45]游庆龙, 康世昌, 田克明, 等, 2007.青藏高原念青唐古拉峰地区气候特征初步分析[J].山地学报, 25(4): 497-504.DOI: 10. 3969/j.issn.1008-2786.2007.04.017.
[46]于娜娜, 徐正会, 张成林, 等, 2011.藏东南色季拉山蚂蚁物种的分布格局[J].北京林业大学学报, 33(5): 75-80.DOI: 10. 13332/j.1000-1522.2011.05.002.
[47]张杰, 蒋显锋, 陈玲玲, 等, 2017.巨伞钟报春繁殖策略随海拔梯度的变异[J].西北植物学报, 37(7): 1404-1413.DOI: 10.7606/j.issn.1000-4025.2017.07.1404.
[48]张文霞, 张丽霞, 周天军, 2016.雅鲁藏布江流域夏季降水的年际变化及其原因[J].大气科学, 40(5): 965-980.DOI: 10.3878/j.issn.1006-9895.1512.15205.