Based on the conventional meteorological observational data, automatic observational precipitation and 1°×1° NCEP FNL reanalysis data of time resolution of 6 hours interval, two heavy rain processes occurred on 1 August 2017 and 2-3 August 2018 in Heilongjiang province by the warm front frontogenesis north of the subtropical high are diagnosed with dynamic diagnosis method and synoptic method.The major conclusions are as follow: There are typhoons during the two warm front rainstorm, which cause the position of subtropical high to the west and north.The southwest low level jet outside the subtropical high transports a large amount of warm moist air with high momentum to the north.The two rainstorm processes are closely related to the high and low air jet.In the process of "0803", the low-altitude jet stream is stronger, and the rainstorm area is located in the ascending branch of the vertical secondary circulation formed by the coupling of low-altitude jet stream and low-altitude jet stream.Before the rainstorm, the atmosphere is characterized by convective instability.The interaction of convergence uplift and secondary circulation updraft triggers convection and releases unstable energy, resulting in heavy precipitation.During the process of "0803", the atmosphere is shown as convective stability during the rainstorm.The condition symmetry instability of the middle layer in the frontal region is beneficial to the enhancement and maintenance of precipitation intensity.In this process, the frontal intensity is greater, and the upward movement formed by frontal convergence is broader, resulting in heavy precipitation in a larger range.The release of latent heat of condensation over the rainstorm area will cause the generalized high potential temperature region to extend downward, and the wet baroclinic property of the middle and lower layers will increase significantly.The moisture divergence flux and the moisture vertical helicity can well describe the process of heavy precipitation.The strong precipitation area corresponds to the positive region of the moisture divergence flux and the negative region of the moisture vertical helicity.
Li REN
,
Ning ZHAO
,
Meiling ZHAO
,
Yanmin YANG
,
Yue XU
. Diagnosis of Dynamic and Thermal Mechanisms of Two Rainstorm Processes by the Warm Front Frontogenesis North of the Subtropical High[J]. Plateau Meteorology, 2021
, 40(1)
: 61
-73
.
DOI: 10.7522/j.issn.1000-0534.2019.00111
[1]Gao S T, Wang X R, Zhou Y S, 2004.Generation of generalized moist potential vorticity in a frictionless and moist adiabatic flow[J].Geophysical Research Letters, 1(12): L12113.
[2]Hoskins B J, Bretherton F P, 1972.Atmospheric frontgenesis model: Mathematical formulation and solution[J].Journal of the Atmospheric Sciences, 29: 11-37.
[3]冯晋勤, 刘铭, 蔡菁, 2018.闽西山区“7·22”极端降水过程中尺度对流特征[J].应用气象学报, 29(6): 748-758.DOI: 10.11898/1001-7313.20180610.
[4]何齐强, 吕梅, 张铭, 1994.冷锋边界层锋生和锋生环流的诊断研究[J].大气科学, 18(4): 485-491.
[5]刘鸿波, 何明洋, 王斌, 等, 2014.低空急流的研究进展与展望[J].气象学报, 72(2): 191-206.DOI: 10.11676/qxxb2014.022
[6]刘奕辰, 周伟灿, 常煜, 等, 2018.山东半岛东海岸一次台风暴雨的成因研究[J].高原气象, 37(6): 1684-1695.DOI: 10.7522/j.issn.1000-0534.2018.00113.
[7]陆汉城, 杨国祥, 2004.中尺度天气原理和预报[M].北京: 气象出版社, 207-210.
[8]邱贵强, 赵桂香, 董春卿, 等, 2018.一次副热带高压边缘突发性暴雨的锋生及水汽特征分析[J].高原气象, 37(4): 946-957.DOI: 10.7522/j.issn.1000-0534.2017.00059.
[9]全美兰, 刘海文, 朱玉祥, 等, 2013.高空急流在北京“7.21”暴雨中的动力作用[J].气象学报, 71(6): 1012-1019. DOI: 10.11676/qxxb2013.092.
[10]冉令坤, 楚艳丽, 2009.强降水过程中垂直螺旋度和散度通量及其拓展形式的诊断分析[J].物理学报, 58(11): 8094-8106.
[11]任丽, 赵玲, 马国忠, 林嘉楠, 2018.台风残涡北上引发东北地区北部大暴雨的中尺度特征分析[J].高原气象, 37(6): 1671-1683.DOI: 10.7522/j.issn.1000-0534.2018.00036.
[12]沈阳, 孙燕, 蔡凝昊, 等, 2019.一次引发极端降水事件的江淮气旋发生发展分析[J].气象, 45(2): 166-179.DOI: 10.7519/j.issn.1000-0526.2019.02.003.
[13]孙力, 董伟, 药明, 等, 2015.1205号“布拉万”台风暴雨及降水非对称性分布的成因分析[J].气象学报, 73(1): 36-49.DOI: 10.11676/qxxb2015.004.
[14]杨卫东, 2017.黑龙江省气象灾害防御技术手册[M].北京: 气象出版社, 53-54.
[15]张芹, 王洪明, 张秀珍, 等, 2018.2017年山东雨季首场暖区暴雨的特征分析[J].高原气象, 37(6): 1696-1704.DOI: 10.7522/j.issn.1000-0534.2018.00052.
[16]赵强, 王楠, 李萍云, 等, 2017.两次陕北暴雨过程热力动力机制诊断[J].应用气象学报, (3): 340-356.DOI: 10.11898/1001-7313.20170308.
[17]赵宇, 蓝欣, 杨成芳, 2018.一次江淮气旋极端雨雪过程的云系特征和成因分析[J].高原气象, 37(5): 1325-1340. DOI: 10.7522/j.issn.1000-0534.2018.00024.
[18]朱乾根, 林锦瑞, 寿绍文, 等, 2007.天气学原理和方法[M].北京: 气象出版社.