Analysis on the Changes of Soil Freezing and Thawing Process and Its Relationship with Air Temperature in the Central Qinghai-Xizang Plateau

  • Lintong CAI ,
  • Xuewei FANG ,
  • Shihua Lü ,
  • Yu ZHANG ,
  • Zhaoguo LI ,
  • Shaobo ZHANG ,
  • Xin LAI
Expand
  • <sup>1.</sup>College of Atmospheric Science,Chengdu University of Information and Technology,Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,Chengdu 610225,Sichuan,China;<sup>2.</sup>Nanjing University of Information Science and Technology,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing 210044,Jiangsu,China;<sup>3.</sup>Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Region,Lanzhou 730000,Gansu,China

Received date: 2020-06-15

  Online published: 2021-04-28

Abstract

Based on the in-suit observational data of 22 stations in the central Qinghai-Xizang Plateau(QXP) from 2010 to 2014 and the 3-hourly 0.25°×0.25° gridded data derived from GLDAS-NOAH from 1960 to 2014, the changes in freezing and thawing tensity and frequency over the central QXP was analyzed by linear regression method, and the relationship between freezing and thawing tensity and air temperature was also discussed.The results are as follows: (1) According to the observational data, the durations of freezing and thawing processes in the central QXP show considerable differences between the stronger and weaker freezing years.(2) The average temperature of the central QXP shows an increasing tendency, with a rate of 0.39 ℃·(10a)-1; the freeze start date was delayed at a rate of 0.91 d·(10a)-1, and the freeze end date was advanced at a rate of 2.88 d·(10a)-1 from 1960 to 2014.It is noteworthy that the freeze end date responded more quickly to the air warming compared to the freeze start date.(3) From the vertical point of view, the soil at 5 cm under the ground shows the most obvious differences in both temperature and liquid water content under different freezing and thawing tensity conditions.Besides, the differences decreased gradually with the increase of soil depth.The heat difference caused by the obviously different rates of water phase change in surface soil under stronger and weaker freezing conditions makes the remarkable differences in diurnal variations of soil temperature.

Cite this article

Lintong CAI , Xuewei FANG , Shihua Lü , Yu ZHANG , Zhaoguo LI , Shaobo ZHANG , Xin LAI . Analysis on the Changes of Soil Freezing and Thawing Process and Its Relationship with Air Temperature in the Central Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2021 , 40(2) : 244 -256 . DOI: 10.7522/j.issn.1000-0534.2020.00073

References

[1]Bi H Y, Ma J W, Zheng W J, et al, 2016.Comparison of soil moisture in GLDAS model simulations and in-situ observations over the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 121(6): 2658-2678.
[2]Fang X W, Luo S Q, Lyu S H, 2019.Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960 -2014[J].Theoretical and Applied Climatology, 135(1/2): 169-181.
[3]Guo D L, Yang M X, Wang H J, 2011.Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau[J].Environmental Earth Sciences, 63 (1): 97-107.
[4]Guo D L, Wang A H, Li D, et al, 2018.Simulation of changes in the near-surface soil freeze/thaw cycle using CLM4.5 with four atmospheric forcing data sets[J].Journal of Geophysical Research: Atmospheres, 123(5): 2509-2523.
[5]Guo D L, Wang H J, 2014.Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010[J].Chinese Science Bulletin, 59(20): 2439-2448.
[6]Henry H, 2013.Soil freezing dynamics in a changing climate: Implications for agriculture[M].Plant and Microbe Adaptations to Cold in a Changing World, 17-27.
[7]Knox J C, 2001.Agricultural influence on landscape sensitivity in the Upper Mississippi River Valley[J].Catena, 42(2): 193-224.
[8]Kumar S V, Peters-Lidard C D, Tian Y, et al, 2006.Land information system: An interoperable framework for high resolution land surface modelling[J].Environmental Modelling and Software, 21(10): 1402-1415.
[9]Niu G Y, Yang Z L, 2006.Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J].Journal of Hydrometeorology, 7(5): 937-952.
[10]Song M H, Ma Y M, Zhang Y, et al, 2014.An off-line simulation of land surface processes over the northern Tibetan Plateau[J].Sciences in Cold and Arid Regions, 6(3): 236-246.
[11]Wang K, Zhang T J, Zhong X Y, 2015.Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China[J].The Cryosphere, 9(3): 1321-1331.
[12]Wang S L, Jin H J, Li S X, et al, 2000.Permafrost degradation on the Qinghai-Tibet Plateau and its environmental impacts[J].Permafrost and Periglacial Processes, 11(1): 43-53.
[13]Yao T D, Thompson L G, Mosbrugger V, et al, 2012.Third pole environment (TPE)[J].Environmental Development, 3: 52-64.
[14]Yang K, Qin J, Zhao L, et al, 2013.A multi-scale soil moisture and freeze-thaw monitoring network on the third pole[J].Bulletin of American Meteorological Society, 94(12): 1907-1916.
[15]Yang M X, Yao T D, Gou X H, et al, 2007.Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau[J].Chinese Science Bulletin, 52(1): 136-139.
[16]Zhao L, Ping C L, Yang D Q, et al, 2004.Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China[J].Global and Planetary Change, 43(1): 19-31.
[17]Zhang T J, Wang K, Zhong X Y, 2015.Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China[J].Cryosphere Discussions, 8(4): 3785-3809.
[18]Zheng D H, Velde V D R, Su B, et al, 2018.Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers[J].Journal of Hydrology, 563: 382-394.
[19]保鸿燕, 杨凯, 李一玲, 等, 2016.GLDAS土壤湿度在青藏高原地区的误差及其原因[C]//中国气象学会.第33届中国气象学会年会 S8 数值模式产品应用与评估.北京: 中国气象学会, 21.
[20]陈渤黎, 罗斯琼, 吕世华, 等, 2014.陆面模式CLM对若尔盖站冻融期模拟性能的检验与对比[J].气候与环境研究, 19(5): 649-658.
[21]陈渤黎, 吕世华, 罗斯琼, 2012.CLM3.5模式对青藏高原玛曲站陆面过程的数值模拟研究[J].高原气象, 31(6): 1511-1522.
[22]陈军锋, 2014.季节性冻融期不同地下水位埋深下土壤水分迁移转化规律研究[D].太原: 太原理工大学.
[23]崔园园, 覃军, 敬文琪, 等, 2018.GLDAS和CLDAS融合土壤水分产品在青藏高原地区的适用性评估[J].高原气象, 37(1): 123-136.DOI: 10.7522/j.issn.1000-0534.2017.00035.
[24]邓明珊, 孟宪红, 马英赛, 等, 2018.基于GLDAS产品的青藏高原土壤湿度特征分析[J].干旱气象, 36(4): 595-602.
[25]高荣, 钟海玲, 董文杰, 等, 2010.青藏高原积雪和季节冻融层的突变特征及其对中国降水的影响[J].冰川冻土, 32(3): 469-474.
[26]葛骏, 余晔, 李振朝, 等, 2016.青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J].高原气象, 35(3): 608-620.DOI: 10.7522/j.issn.1000-0534.2016.00032.
[27]金会军, 王绍令, 吕兰芝, 等, 2010.黄河源区冻土特征及退化趋势[J].冰川冻土, 32(1): 10-17.
[28]李述训, 南卓铜, 赵林, 2002.冻融作用对地气系统能量交换的影响分析[J].冰川冻土, 24(5): 506-511.
[29]罗布, 智海, 多典洛珠, 2018.青藏高原多年冻土区典型下垫面冻融过程作用分析[J].高原山地气象研究, 38(1): 11-16.
[30]骆琪, 阳坤, 陈莹莹, 等, 2020.利用土壤水分数据估计高寒区土壤有机碳含量的方法研究[J].中国科学: 地球科学, 50(4): 570-580.
[31]潘永洁, 吕世华, 高艳红, 等, 2015.砾石对青藏高原土壤水热特性影响的数值模拟[J].高原气象, 34(5): 1224-1236.DOI: 10. 7522/j.issn.1000-0534.2014.00055.
[32]钱安, 易爽, 孙广通, 等, 2018.GLDAS_NOAH_M.2.1水文模型在青藏高原的适定性分析[J].大地测量与地球动力学, 38(3): 254-259.
[33]尚大成, 王澄海, 2006.高原地表过程中冻融过程在东亚夏季风中的作用[J].甘肃气象, 24(3): 19-22.
[34]沈润平, 郭倩, 陈萍萍, 等, 2019.高分辨率大气强迫和植被功能型数据对青藏高原土壤温度模拟影响[J].高原气象, 38(6): 1129-1139.DOI: 10.7522/j.issn.1000-0534.2018.00159.
[35]孙菽芬, 2005.陆面过程的物理、 生化机理和参数化模型[M].北京: 气象出版社, 72-83.
[36]王澄海, 董文杰, 韦志刚, 2003.青藏高原季节冻融过程与东亚大气环流关系的研究[J].地球物理学报, 46(3): 309-316.
[37]徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961-2010年青藏高原气候变化特征分析[J].高原气象, 38(5): 911-919.DOI: 10.7522/j.issn.1000-0534.2018.00137.
[38]许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.
[39]许顺芳, 王林松, 陈超, 等, 2018.利用GRACE及气象数据评估GLDAS水文模型在青藏高原的适用性[J].大地测量与地球动力学, 38(1): 8-13.
[40]薛彦广, 高志球, 沙文钰, 2010.利用简单生物圈模式SiB2模拟青藏高原地表能量收支[J].大气科学, 34(1): 131-142.
[41]杨梅学, 姚檀栋, 何元庆, 2002.青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J].山地学报, 20(5): 553-558.
[42]杨楠, 范广洲, 2019.2000-2016年青藏高原土壤温度变化特征分析[J].西南大学学报(自然科学版), 41(9): 40-51.
[43]杨淑华, 吴通华, 李韧, 等, 2018.青藏高原近地表土壤冻融状况的时空变化特征[J].高原气象, 37(1): 43-53.DOI: 10.7522/j.issn.1000-0534.2017.00043.
[44]叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报, 28 (2): 108-121.
Outlines

/