Evaluation and Bias Correction of the Historical and Future Near-Surface Climate Forcing in NEX-GDDP and CMIP5 over the Qinghai-Xizang Plateau

  • Shuo CHEN ,
  • Tao YE ,
  • Weihang LIU ,
  • Aihui WANG
Expand
  • <sup>1.</sup>Key Laboratory of Environmental Change and Natural Disaster,Ministry of Education,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China;<sup>2.</sup>School of Geographic Science,Guangzhou University,Guangzhou 510006,Guangdong,China;<sup>3.</sup>State Key Laboratory of Earth Surface Processes and Resource Ecology,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China;<sup>4.</sup>Academy of Disaster Reduction and Emergency Management,Ministry of Emergency Management & Ministry of Education,Beijing 100875,China;<sup>5.</sup>Nansen-Zhu International Research Centre,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

Received date: 2019-12-24

  Online published: 2021-04-28

Abstract

The Qinghai-Xizang Plateau is a hot spot in global change research, and climate models are important data sources for studying climate change in this region.In this study, using a gridded meteorological dataset based on ground observation (CN05.1), we evaluated the performance of 15 models from the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5) and their downscaled high-resolution dataset (NEX-GDDP) in simulating daily maximum/minimum near-surface air temperature, precipitation and mean near-surface wind speed in the Qinghai-Xizang Plateau during 1966-2005.A trend-preserving bias correction, the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) approach, was used to train and validate the above data and further applied to bias-correct CMIP5 and NEX-GDDP data in the future period.Our results indicate that: (1) In the training period (1986 -2005), NEX-GDDP tends to overestimate daily maximum air temperature (1.04 ℃) and daily minimum air temperature (0.23 ℃), and underestimate precipitation (-0.11 mm).CMIP5 underestimates daily mean near-surface wind speed (-0.11 m·s-1).There are large biases in annual/seasonal mean/total values and extreme values.(2) In the validation period (1966 -1985), bias correction increased correlation coefficient of daily data (except air temperature), and reduced root square error and mean bias.It also greatly reduced the bias in annual/seasonal mean/total values and extreme values.(3) In the future period (2006 -2095), our bias-correction process preserved the trend of annual/seasonal mean/total values and extreme values, adjusted their base values and spatial distribution to enable a better connection to historical values.Our results can provide important reference for researches on future climate change and its impacts in the Qinghai-Xizang Plateau region.

Cite this article

Shuo CHEN , Tao YE , Weihang LIU , Aihui WANG . Evaluation and Bias Correction of the Historical and Future Near-Surface Climate Forcing in NEX-GDDP and CMIP5 over the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2021 , 40(2) : 257 -271 . DOI: 10.7522/j.issn.1000-0534.2020.00019

References

[1]Accadia C, Mariani S, Casaioli M, et al, 2003.Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids[J].Weather and Forecasting, 18(5): 918-932.
[2]Bao Y, Wen X Y, 2017.Projection of China's near-and long-term climate in a new high-resolution daily downscaled dataset NEX-GDDP[J].Journal of Meteorological Research, 31(1): 236-249.
[3]Chen H P, Sun J Q, Li H X, 2017.Future changes in precipitation extremes over China using the NEX-GDDP high-resolution daily downscaled data-set[J].Atmospheric and Oceanic Science Letters, 10(6): 403-410.
[4]Chen L, Frauenfeld O W, 2014.A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections[J].Journal of Geophysical Research: Atmospheres, 119(10): 5767-5786.
[5]Giorgi F, Marinucci M R, 1996.An investigation of sensitivity of simulated precipitation to model resolution and its implications for climate studies[J].Monthly Weather Review, 124(1): 148-166.
[6]Gu H H, Yu Z B, Yang C G, et al, 2018.High-resolution ensemble projections and uncertainty assessment of regional climate change over China in CORDEX East Asia[J].Hydrology and Earth System Sciences, 22(5): 3087-3103.
[7]Guo D L, Sun J Q, Yu E T, 2018.Evaluation of CORDEX regional climate models in simulating temperature and precipitation over the Tibetan Plateau[J].Atmospheric and Oceanic Science Letters, 11(3): 219-227.
[8]Hempel S, Frieler K, Warszawski L, et al, 2013.A trend-preserving bias correction-the ISI-MIP approach[J].Earth System Dynamics, 4(2): 219-236.
[9]Hui P H, Tang J P, Wang S Y, et al, 2018.Climate change projections over China using regional climate models forced by two CMIP5 global models.Part II: projections of future climate[J].International Journal of Climatology, 38(Suppl): 78-94.
[10]Jiang D B, Tian Z P, Lang X M, 2016.Reliability of climate models for China through the IPCC third to fifth assessment reports[J].International Journal of Climatology, 36(3): 1114-1133.
[11]Jiang D B, Wang H J, Lang X M, 2005.Evaluation of East Asian climatology as simulated by seven coupled models[J].Advances in Atmospheric Sciences, 22(4): 479-495.
[12]Knutti R, Furrer R, Tebaldi C, et al, 2010.Challenges in combining projections from multiple climate models[J].Journal of Climate, 23(10): 2739-2758.
[13]Liu X D, Chen B D, 2000.Climatic warming in the Tibetan Plateau during recent decades[J].International Journal of Climatology, 20(14): 1729-1742.
[14]Ma Y M, Kang S C, Zhu L P, et al, 2008.Roof of the world: Tibetan observation and research platform[J].Bulletin of the American Meteorological Society, 89(10): 1487-1492.
[15]Mishra S K, Jain S, Salunke P, et al, 2019.Past and future climate change over the Himalaya-Tibetan Highland: inferences from APHRODITE and NEX-GDDP data[J].Climatic Change, 156(3): 315-322.
[16]Reichler T, Kim J, 2008.How well do coupled models simulate today's climate?[J].Bulletin of the American Meteorological Society, 89(3): 303-311.
[17]Su F G, Duan X L, Chen D L, et al, 2013.Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J].Journal of Climate, 26(10): 3187-3208.
[18]Taylor K E, Stouffer R J, Meehl G A, 2012.An overview of CMIP5 and the experiment design[J].Bulletin of the American Meteorological Society, 93(4): 485-498.
[19]Thrasher B, Maurer E P, McKellar C, et al, 2012.Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping[J].Hydrology and Earth System Sciences, 16(9): 3309-3314.
[20]Wang X J, Pang G J, Yang M X, 2018.Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations[J].International Journal of Climatology, 38(3): 1116-1131.
[21]Wang X J, Pang G J, Yang M X, et al, 2016.Effects of modified soil water-heat physics on RegCM4 simulations of climate over the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 121(12): 6692-6712.
[22]Xie P P, Yatagai A, Chen M Y, et al, 2007.A Gauge-based analysis of daily precipitation over East Asia[J].Journal of Hydrometeorology, 8(3): 607-626.
[23]Xing N, Li J P, Wang L N, 2017.Multidecadal Trends in Large-Scale Annual Mean SATa Based on CMIP5 Historical Simulations and Future Projections[J].Engineering, 3(1): 136-143.
[24]Xu Y, Gao X J, Shen Y, et al, 2009.A daily temperature dataset over China and its application in validating a RCM simulation[J].Advances in Atmospheric Sciences, 26(4): 763-772.
[25]Yang F, Lu H, Yang K, et al, 2017.Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China[J].Hydrology and Earth System Sciences, 21(11): 5805-5821.
[26]Yang K, Wu H, Qin J, et al, 2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J].Global and Planetary Change, 112: 79-91.
[27]Yang K, Ye B S, Zhou D G, et al, 2011.Response of hydrological cycle to recent climate changes in the Tibetan Plateau[J].Climatic Change, 109(3/4): 517-534.
[28]Yang M X, Nelson F E, Shiklomanov N I, et al, 2010.Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research[J].Earth-Science Reviews, 103(1/2): 31-44.
[29]Yao T D, Thompson L, Yang W, 2012.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J].Nature Climate Change, 2(9): 663-667.
[30]Yatagai A, Kamiguchi K, Arakawa O, et al, 2012.APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J].American Meteorological Society, 93(9): 1401-1415.
[31]Yu Y, Shao Q X, Lin Z H, 2018.Regionalization study of maximum daily temperature based on grid data by an objective hybrid clustering approach[J].Journal of Hydrology, 564: 149-163.
[32]Zhai P M, Pan X H, 2003.Trends in temperature extremes during 1951-1999 in China[J].Geophysical Research Letters, 30(17): 1913.DOI: 10.1029/2003GL018004.
[33]Zhang X B, Alexander L, Hegerl G C, et al, 2011.Indices for monitoring changes in extremes based on daily temperature and precipitation data[J].Wiley Interdisciplinary Reviews Climate Change, 2(6): 851-870.
[34]Zhou X J, Zhao P, Chen J M, et al, 2009.Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate[J].Science in China (Earth Sciences), 52(11): 1679-1693.
[35]高谦, 江志红, 李肇新, 2017.多模式动力降尺度对中国中东部地区极端气温指数的模拟评估[J].气象学报, 75(6): 917-933.
[36]胡芩, 姜大膀, 范广洲, 2014.CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J].大气科学, 38(5): 924-938.
[37]刘文丰, 徐宗学, 李发鹏, 等, 2014.基于ASD统计降尺度的雅鲁藏布江流域未来气候变化情景[J].高原气象, 33(1): 26-36.DOI: 10.7522/j.issn.1000-0534.2012.00176.
[38]马佳宁, 高艳红, 2019.近50年黄河上游流域年均降水与极端降水变化分析[J].高原气象, 38(1): 124-135.DOI: 10.7522/j.issn.1000-0534.2018.00126.
[39]史培军, 王爱慧, 孙福宝, 等, 2016.全球变化人口与经济系统风险形成机制及评估研究[J].地球科学进展, 31(8): 775-781.
[40]田展, 冯磊, 陈葆德, 等, 2008.情景在气候变化研究中的应用研究进展[J].高原气象, 27(增刊): 16-21.
[41]王玉琦, 鲍艳, 南素兰, 2019.青藏高原未来气候变化的热动力成因分析[J].高原气象, 38(1): 29-41.DOI: 10.7522/j.issn. 1000-0534.2018.00066.
[42]吴佳, 高学杰, 2013.一套格点化的中国区域逐日观测资料及与其他资料的对比[J].地球物理学报, 56(4): 1102-1111.
[43]许崇海, 沈新勇, 徐影, 2007.IPCC AR4模式对东亚地区气候模拟能力的分析[J].气候变化研究进展, 3(5): 287-292.
[44]张莉, 丁一汇, 孙颖, 2008.全球海气耦合模式对东亚季风降水模拟的检验[J].大气科学, 32(2): 261-276.
Outlines

/