Effects of different initial fields from global data such as GRAPES_GFS, FNL and ERA-interim on a rainstorm process which occurred in the Northwest of China from 6 to 7 August 2017 were studied with Meso-scale model WRF V3.8.1 Synoptic analyses show that the formation and evolution of the rainstorm was caused by the strengthen of the South Asia High associated with the upper jet at 200 hPa, westwards extending and northwards moving of the subtropical high as well as development of the plateau trough at 500 hPa and low-level shear line at 700 hPa.Comparative analyses indicate that only easterly low-level jet at 700 hPa was appeared in the GRAPES_GFS data among three kinds of data, which may be the mainly synoptic system for difference of simulated distribution of precipitation with different initial fields.There are some differences at middle and low levels of troposphere in simulated results with three initial fields, which are not obvious at upper levels.A deep trough was appeared in the southeast part of Gansu province in simulated output by initial field from GRAPES-GFS data at 500 hPa, which was a closed low system by initial field from FNL data, while no obvious low systems by initial field from ERA-interim data; At level of 700 hPa, development of easterly low-level jet stream and cyclonic circulation systems can be simulated with three initial fields and there are slightly difference in intensity of simulated systems.According to the distribution of precipitation, simulated results have obvious differences by three initial fields, the location of precipitation center and the regional average precipitation rate simulated by initial field from FNL data were the best among three different initial fields, according to evaluation indexes such as TS, FAR and POD, initial filed from GRAPES_GFS data was the best but the rate of vacancy forecast of rainfall below 20 mm level was relatively larger; Simulated results with initial field from ERA-interim data were the worst in this case.
Zifei HAN
,
Xiao LONG
,
Siyi WANG
,
Qian WEI
,
Xiaoyan CHEN
. Numerical Studies on Effects by Different Initial Fields on a Rainstorm in Northwest China[J]. Plateau Meteorology, 2021
, 40(2)
: 333
-342
.
DOI: 10.7522/j.issn.1000-0534.2020.00017
[1]Tao S Y, Ding Y H, 1981.Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China[J].Bulletin of the American Meteorological Society, 62(1): 23-30.
[2]白晓平, 靳双龙, 王式功, 等, 2018.中国西北地区东部短时强降水时空特征[J].中国沙漠, 38(2): 410-417.DOI: 10.7522/ j.issn.1000-694X.2017.00006.
[3]何光碧, 2006.高原东侧陡峭地形对一次盆地中尺度涡旋及暴雨的数值试验[J].高原气象, 25(3): 430-441.
[4]何光碧, 肖玉华, 屠妮妮, 等, 2011.GRAPES_MESO模式对一次强降水过程的预报及误差分析[C].厦门: 第28届中国气象学会年会.
[5]李江萍, 李俭峰, 杜亮亮, 等, 2013.近50年夏季西北暴雨特征和水汽轨迹分析[J].兰州大学学报(自然科学版), 49(4): 474-482.
[6]李秋阳, 2019.不同初始场资料对台风“桑美”数值模拟的影响[J].气象科技, 47(3): 460-468.DOI: 10.19517/j.1671-6345.20180309.
[7]李生辰, 巩远发, 王田寿, 等, 2010.青藏高原东北部一次强暴雨过程环流特征分析[J].高原气象, 29(2): 278-285.
[8]李晓霞, 寿绍文, 张铁军, 等, 2006.“8·19”西北东部大到暴雨诊断分析和数值模拟[J].气象, 32(2): 81-86.DOI: 10.7519/j.issn.1000-0526.2006.2.015.
[9]刘菊菊, 游庆龙, 周毓荃, 等, 2018.基于ERA-interim的中国云水量时空分布和变化趋势[J].高原气象, 37(6): 144-158.DOI: 10.7522/j.issn.1000-0534.2018.00059.
[10]刘新伟, 段海霞, 杨晓军, 等, 2017.甘肃东部两次短时强降水天气过程对比分析[J].干旱气象, 35(5): 162-167.
[11]罗四维, 钱正安, 王谦谦, 1982.夏季100 hPa南亚高压与我国东部旱涝关系的天气气候研究[J].高原气象, 1(2): 1-10.
[12]孟丽霞, 许东蓓, 狄潇泓, 等, 2017.甘肃省短时强降水的时空特征[J].沙漠与绿洲气象, 11(6): 34-39.DOI: 10.12057/j.issn. 1002-0799.2017.06.005.
[13]钱正安, 蔡英, 宋敏红, 等, 2018.中国西北旱区暴雨水汽输送研究进展[J].高原气象, 37(3): 577-590.DOI: 10.7522/j.issn. 1000-0534.2018.00032.
[14]陶诗言, 1980.中国之暴雨[M].北京: 科学出版社.
[15]吴统文, 钱正安, 1996.夏季西北干旱区干、 湿年环流及高原动力影响差异的对比分析[J].高原气象, 15(4): 387-396.
[16]西北暴雨编写组, 1992.西北暴雨[M].北京: 气象出版社.
[17]谢欣汝, 游庆龙, 保云涛, 等, 2018.基于多源数据的青藏高原夏季降水与水汽传输的联系[J].高原气象, 37(1): 78-92.DOI: 10.7522/j.issn.1000-0534.2017.00030.
[18]于翡, 黄丽萍, 邓莲堂, 2018.GRAPES_MESO模式不同空间分辨率对中国夏季降水预报的影响分析[J].大气科学, 42(5): 1146-1156.
[19]郁淑华, 屠妮妮, 高文良, 2018.一类青藏高原低涡异常路径的环境场分析[J].高原气象, 37(3): 686-701.DOI: 10.7522/j.issn.1000-0534.2017.00039.
[20]张涵斌, 陈静, 智协飞, 等, 2014.GRAPES区域集合预报系统应用研究[J].气象, 40(9): 1076-1087.DOI: 10.7519/j.issn.1000-0526.2014.09.005.
[21]张晓露, 李照荣, 周筠珺, 等, 2015.西北地区东部夏季一次典型暴雨的分析和数值模拟[J].干旱气象, 33(4): 616-625.DOI: 10.11755/j.issn.1006-7639(2015)-04-0616.
[22]张仲杰, 唐景芬, 王士新, 等, 2019.西北地区东部降水异常的大气环流及水汽特征[J].沙漠与绿洲气象, 13(1): 89-94.
[23]赵采玲, 李耀辉, 柳媛普, 等, 2019.中国西北地区大气边界层高度变化特征-基于探空资料与ERA-interim再分析资料[J].高原气象, 38(6): 1181-1193.DOI: 10.7522/j.issn.1000-0534. 2018.00152.
[24]周连童, 黄荣辉, 2018.中国西北干旱、 半干旱区感热的年代际变化特征及其与中国夏季降水的关系[J].大气科学, 32(6): 1276-1288.DOI: 10.3878/j.issn.1006-9895.2008.06.04.