Analysis on Effect of Tropical Indian Ocean Dipole Inter-Annual Oscillation on Annual Variation of Runoff in the Upper Reaches of Yangtze River

  • Yishu PANG ,
  • Ningsheng QIN ,
  • Yu LUO ,
  • Chunxue WANG ,
  • Bin ZHOU
Expand
  • <sup>1.</sup>Institute of Plateau Meteorology,China Meteorological Administration,Chengdu/Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province,Chengdu 610072,Sichuan,China;<sup>2.</sup>Sichuan Climate Center,Chengdu 610072,Sichuan,China

Received date: 2019-12-18

  Online published: 2021-04-28

Abstract

In this paper, the influence of Tropical Indian Ocean Dipole (TIOD) oscillation in autumn on the annual runoff in the upper reaches of the Yangtze river in the following year and the corresponding physical mechanism were analyzed by means of interannual increment, wavelet analysis and regression analysis.The results show that both the autumn TIOD and annual runoff of the upper Yangtze River have significant interannual oscillation characteristics, especially before the 1980s and after the 1990s.Their hysteresis correlation coefficient is 0.42, passing the significance test of 99.9%.In other words, autumn TIOD was strengthened (weakened) compared with the previous year, which is conducive to the increase (decrease) of runoff in the upper reaches of the Yangtze river in the next year.Such a relationship can be realized through the modulation of autumn TIOD on precipitation, especially the summer precipitation.When TIOD is strengthened in autumn, the SST of the equatorial Indian Ocean shows an east-west "-+" distribution, in which the warmer zone extends to 20°N/S, and the colder zone stretches to the western Pacific Ocean.An enhanced Walker circulation is stimulated over the equatorial Indian Ocean to the western Pacific Ocean, centered directly over the Indian Ocean.With the development of time, the warm Kelvin wave generates and propagates to the east, and the center of the warm and cold sea temperature difference in the Indian Ocean moves to the east.In the following summer, the warm SST center of the western Indian Ocean moves to the edge of the eastern Indian Ocean to the South China Sea, while the cold area retreats to date line.The enhanced Walker circulation over Indian Ocean disappeared while the westerly of its upper layer turns to easterly and links to enhanced climbing airflow near 105°E.At the same time, the Walker Cell over the east of 105°E is strengthened, of which the upper level is westerly and the region below 400 hPa is easterly airflow.With the Coupling of high- and low-level circulation and cooperation with the Coriolis force, the negative vorticity increases in the subtropical zone of Northern Hemisphere, which lead to a larger and stronger West Pacific Subtropical High and northward expansion of corresponding anomalous anticyclone accordingly.Southwest airflow around this circulation system strengthens the water vapor transportation from the South China Sea and Bay of Bengal to the whole upper reaches of the Yangtze River in summer.Water vapor convergence rises and the precipitation significantly is more, which affects the variation of annual runoff in the upper reaches of the Yangtze River.

Cite this article

Yishu PANG , Ningsheng QIN , Yu LUO , Chunxue WANG , Bin ZHOU . Analysis on Effect of Tropical Indian Ocean Dipole Inter-Annual Oscillation on Annual Variation of Runoff in the Upper Reaches of Yangtze River[J]. Plateau Meteorology, 2021 , 40(2) : 353 -366 . DOI: 10.7522/j.issn.1000-0534.2020.00045

References

[1]Ashok K, Guan Z Y, Yamagata T, 2001.Impact of the Indian Ocean dipole on the relationship between the Indian Monsoon rainfall and ENSO[J].Geophysical Research Letters, 28(23): 4499-4502.DOI: 10.1029/2001GL013294.
[2]Ashok K, Guan Z Y, Yamagata T, 2002.Weakening of the ENSO-Indian monsoon rainfall relationship: The Indian Ocean connection[R].Clivar Exchange, 1: 10-11.
[3]Behera S K, Krishnan R, Yamagata T, et al, 1999.Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994[J].Geophysical Research Letters, 26(19): 3001-3004.
[4]Latif M, Dommenget D, 1999.The role of Indian Ocean sea surface temperature in forcing east African rainfall anoma lies during December-January 1997/1998[J].Journal of Climate, 12(12): 3497-3504.
[5]Li C Y, Mu M Q, 2001.The influence of the indian ocean dipole on atmospheric circulation and climate[J].Advances in Atmospheric Sciences, 18(5): 831-843.
[6]Nagura M, Konda M, 2007.The seasonal development of an SST anomaly in the Indian Ocean and its relationship to ENSO [J].Journal of Climate, 20(1): 38-52.DOI: 10.1175/JCLI3986.1.
[7]Rao S A, Behera S K, Masumoto Y, et al, 2002.Interannual variability in the subsurface tropical Indian Ocean with a special emphasis on the Indian Ocean dipole[J].Deep Sea Research.Part II: Topical Studies in Oceanography, 49: 1549-1572.
[8]Saji N H, Yamagata T, 2003a.Structure of SST and surface wind variability during indian ocean dipole mode events: COADS observations[J].Journal of Climate, 16: 2735-2751.
[9]Saji N H, Yamagata T, 2003b.Possible impacts of Indian Ocean Dipole mode events on global climate[J].Climate Research, 25(2): 151-169.
[10]Saji N H, Goswami B N, Vinayachandran P N, et al, 1999.A dipole mode in the tropical Indian Ocean[J].Nature, 401: 360-363.
[11]Vinayachandran P N, Saji H N, Yamagata T, 1999.Response of the equatorial Indian Ocean to an unusual wind event during 1994[J].Geophysical Research Letters, 26(11): 1613-1616.DOI: 10.1029/1999GL900179.
[12]Wang H J, Zhou G Q, Zhao Y, 2000.An effective method for correcting the seasonal-interannual prediction of summer climate anomaly[J].Advances in Atmospheric Sciences, 17(2): 234-240
[13]Webster P J, Moore A M, Loschnigg J P, et al, 1999.Coupled ocean-atmosphere in the Indian Ocean during 1997-1998[J].Nature, 401: 356-360.
[14]Xu K, Zhu C W, Wang W Q, 2016.The cooperative impacts of the ElNi?o-Southern Oscillation and the Indian Ocean dipole on the interannual variability of autumn rainfall in China[J].International Journal of Climatology, 36(4): 1987-1999.DOI: 10.1002/joc.4475.
[15]Yamagata T, Behera S, Rao S A, et al, 2003.Comments on “Dipoles, temperature gradients, and tropical climate anomalies”[J].Bulletin of the American Meteorological Society, 84: 1418-1422.
[16]陈菊英, 1999.ENSO和长江大水对天文因子的响应研究[J].地球物理学报, 42(增刊): 30-40.
[17]陈丹, 布和朝鲁, 朱克云, 2013.春末环贝加尔湖地区环流的年际和年代际变化及与中国温度和降水的关系[J].大气科学, 37 (6): 1199-1209.
[18]范可, 王会军, Choi Y J, 2007.一个长江中下游夏季降水的物理统计预测模型[J].科学通报, 52(24): 2900-2905.
[19]谷德军, 纪忠萍, 王东晓, 等, 2007.不同时间尺度上南海夏季风强度与海洋热力条件的关系[J].热带气象学报, 23(1): 14-20.
[20]冯琬, 范广洲, 龙妍妍, 2018.夏季南亚高压及西太平洋副热带高压强度变化与前期海温异常的关系[J].气候变化研究进展, 14(2): 111-119.
[21]黄胜, 2006.长江上游干流区径流变化规律及预测研究[D].成都: 四川大学.
[22]蒋兴文, 李跃清, 李春, 等, 2007.四川盆地夏季水汽输送特征及其对旱涝的影响[J].高原气象, 26(3): 476-484.
[23]李崇银, 穆明权, 2001a.赤道印度洋海温偶极子型振荡及其气候影响[J].大气科学, 25(4): 433-443.
[24]李崇银, 穆明权, 潘静, 2001b.印度洋海温偶极子和太平洋海温异常[J].科学通报, 46(20): 1747-1750.
[25]李东辉, 俞永强, 刘海龙, 等, 2005.FGCM-1.0耦合模式对热带印度洋偶极子的模拟[J].自然科学进展, 15(10): 1230-1236.
[26]刘宣飞, 袁慧珍, 2006.印度洋偶极子与中国秋季降水的关系[J].南京气象学院学报, 29(5): 644-649.
[27]吕爱锋, 贾绍凤, 王素慧, 等, 2010.PDO和ENSO指数与三江源地区径流变化的相关关系研究[J].南水北调与水利科技, 8(2): 49-52.
[28]孟文, 吴国雄, 2000.赤道印度洋-太平洋地区海气系统的齿轮式耦合和ENSO 事件: Ⅱ.数值模拟[J].大气科学, 24(1): 15-25.
[29]钱海峰, 殷永红, 倪允琪, 2003.热带印度洋偶极子次表层模态及其1997/1998年过程诊断分析研究[J].应用气象学报, 14(2): 129-139.
[30]石教智, 陈晓宏, 黎坤, 2005.基于HHT方法的宜昌近百年径流演化模式分析[J].人民长江, 36(11): 34-36.
[31]唐卫亚, 孙照渤, 2005.印度洋海温偶极振荡对东亚环流及降水的影响[J].南京气象学院学报, 28(3): 316-322.
[32]吴国雄, 孟文, 1998.赤道印度洋-太平洋地区海气系统的齿轮式耦合和ENSO事件: I资料分析[J].大气科学, 22(4): 470-480.
[33]肖子牛, 晏红明, 李崇银, 2002.印度洋地区异常海温的偶极振荡与中国降水及温度的关系[J].热带气象学报, 18(4): 335-344.
[34]徐留兴, 2006.岷江上游径流变化特性分析及其预测研究[D].成都: 四川大学.
[35]闫晓勇, 张铭, 2004a.赤道东太平洋海温异常期间印度洋偶极子对东亚季风区影响的数值模拟[J].热带气象学报, 20(4): 375-382.
[36]闫晓勇, 张铭, 2004b.印度洋偶极子对东亚季风区天气气候的影响[J].气候与环境研究, 19(3): 435-440.
[37]晏红明, 李崇银, 2007.赤道印度洋纬向海温梯度模及其气候影响[J].大气科学, 31(1): 64-76.
[38]晏红明, 李清泉, 孙丞虎, 等, 2013.中国西南区域雨季开始和结束日期划分标准的研究[J].大气科学, 37(5): 1111-1128.
[39]殷永红, 史历, 倪允琪, 2001.近20年来热带印度洋与热带太平洋海气系统相互作用特征的诊断研究[J].大气科学, 25(3): 355-371.
[40]张士锋, 华东, 孟秀敬, 等, 2011.三江源气候变化及其对径流的驱动分析[J].地理学报, 66(1): 13-24.
[41]朱丽华, 范广洲, 董一平, 等, 2011.青藏高原夏季500hPa纬向风的时空演变特征及其与我国降水的关系[J].大气科学, 35(1): 168-178.
Outlines

/