Characteristics of Surface-layer Turbulence Spectra in Xiaoxing’an Mountains

  • Pengfei SUN ,
  • Guangzhou FAN ,
  • Zhe QU ,
  • Xingguang LIU ,
  • Yinjun WANG ,
  • Chao YUAN
Expand
  • <sup>1.</sup>College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China;<sup>2.</sup>Yichun Meteorological Bureau,Heilongjiang Province,Yichun 153000,Heilongjiang,China;<sup>3.</sup>Weather Modification Office of Heilongjiang Province,Heilongjiang Province,Haerbin 150030,Heilongjiang,China;<sup>4.</sup>State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing 100081,China;<sup>5.</sup>Panjin Meteorological Bureau,Liaoning Province,Panjin 124010,Liaoning,China

Received date: 2020-08-13

  Online published: 2021-04-28

Abstract

Based on the turbulence data obtained from eddy covariance system at the height of 50 m in Wuying over the Xiaoxing'an Mountains, the spectra and cospectra of turbulence under different atmospheric stability are analyzed.The results indicate that the peaks of the normalized spectra of velocity (u, v, w) moves to the high frequency with the increased of atmospheric stability.The characteristics of the normalized spectra of temperature (θ) and humidity (q) are similar to those of the velocity (u, v, w) spectra, but the spectral density curves are dispersed under different stability conditions.The normalized cospectra of the vertical wind component (w) and u-wind component (u) are similar to those of the spectra of velocity (u, v, w), which are same as the normalized cospectra of the vertical wind component (w) and temperature (θ).The normalized spectra of velocity (u, v, w) and temperature (θ) and humidity (q) follow the -2/3 law in the higher frequency.The normalized cospectra of uw and θw and qw do not completely follow the -4/3 law in the higher frequency, especially the slopes of fitting line for uw-cospectra is closer to -1.The peak wavelength of u-spectra is about 130~1820 m, and the spectra of w and θ and q are about 49~113 m, 149~260 m and 198~455 m, respectively.The peak wavelength of the cospectra of uw and θw and qw are about 228~455 m, 172~260 m and 172~346 m, respectively.The v-spectra conforms the local isotropy in the higher frequency, and the w-spectra does not satisfy the local isotropy, which may be attributed to the fragmentation of the vertical turbulent vortex in forest underlying surface.

Cite this article

Pengfei SUN , Guangzhou FAN , Zhe QU , Xingguang LIU , Yinjun WANG , Chao YUAN . Characteristics of Surface-layer Turbulence Spectra in Xiaoxing’an Mountains[J]. Plateau Meteorology, 2021 , 40(2) : 374 -383 . DOI: 10.7522/j.issn.1000-0534.2020.00099

References

[1]Amiro B D, 1990.Drag coefficients and turbulence spectra within three boreal forest canopies[J].Boundary-Layer Meteorology, 52(3): 227-246.
[2]Cava D, Giostra U, Tagliazucca M, 2001.Spectral maxima in a perturbed stable boundary layer[J].Boundary-Layer Meteorology, 100(3): 421-437.
[3]Kolmogorov A N, 1968.The local structure of yurbulence in incompressible viscous fluid for very large Reynolds numbers[J].Proceedings of the Royal Society of London, 434(1890): 9-13.
[4]Kaimal J C, Wyngaard J C, Izumi Y, et al, 1972.Spectral characteristics of surface-layer turbulence[J].Quarterly Journal of the Royal Meteorological Society, 98(417): 563-589.
[5]Kustas W P, Brutsaert W, 1986.Wind profile constants in a neutral atmospheric boundary layer over complex terrain[J].Boundary-Layer Meteorology, 34(1-2): 35-54.
[6]Kaimal J C, 1994.Atmospheric boundary layer flows[M].New York: Oxford University Press, 1-289.
[7]Stull R B, 1991.边界层气象学导论[M].杨长新等译.北京: 气象出版社, 1-738.
[8]Su H B, Leclerc M Y, 1998.Large-eddy simulation of tracer footprints from infinite crosswind line sources inside a forest canopy[C]//In: Proceedings of the 23rd Conference on Agricultural and Forest Meteorology.Preprints.American Meteorological Society, Boston, MA, 388-391.
[9]陈家宜, 范邵华, 赵传峰, 等, 2006.涡旋相关法测定湍流通量偏低的研究[J].大气科学, 30(3): 423-432.
[10]杜一博, 张强, 王凯嘉, 等, 2018.西北干旱区夏季晴天、 阴天边界层结构及其陆面过程对比分析[J].高原气象, 37(1): 148-157.DOI: 10.7522/j.issn.1000-0534.2017.00042.
[11]胡海清, 罗碧珍, 魏书精, 等, 2013.1953—2011年小兴安岭森林火灾含碳气体排放的估算[J].应用生态学报, 24(11): 3065-3076.
[12]金莉莉, 李振杰, 何清, 等, 2019.塔克拉玛干沙漠北缘夏季典型晴天近地层湍流能谱特征[J].中国沙漠, 39(6): 1-12.
[13]刘树华, 刘和平, Mei X, 等, 1998.森林冠层上下湍流谱结构和耗散率[J].中国科学(地球科学), 28(5): 469-480.
[14]刘树华, 胡非, 刘辉志, 等, 2003.森林冠层上湍流尺度、 耗散率和湍流结构参数[J].北京大学学报(自然科学版), 39(1): 73-82.
[15]刘树华, 李洁, 刘和平, 等, 2005.在EBEX-2000实验资料中湍流谱和局地各向同性特征[J].大气科学, 29(2): 213-224.
[16]刘明星, 张宏升, 宋星灼, 等, 2008.不同下垫面温度和湿度湍流谱特征研究[J].北京大学学报(自然科学版), 44(3): 391-398.
[17]李茂善, 杨耀先, 马耀明, 等, 2012.纳木错(湖)地区湍流数据质量控制和湍流通量变化特征[J].高原气象, 31(4): 875-884.
[18]李茂善, 阴蜀城, 刘啸然, 等, 2019.近10年青藏高原及其周边湍流通量变化的数值模拟[J].高原气象, 38(6): 1140-1148.DOI: 10.7522/j.issn.1000-0534.2018.00145.
[19]李雪洮, 梁捷宁, 郭琪, 等, 2020.利用大涡模式模拟黄土高原地区对流边界层特征[J].高原气象, 39(3): 523-531.DOI: 10. 7522/j.issn.1000-0534.2019.00050.
[20]柳媛普, 李锁锁, 吕世华, 等, 2013.几种通量资料修正方法的比较[J].高原气象, 32(6): 1704-1711.DOI: 10.7522/j.issn.1000-0534.2013.00127.
[21]陆彬, 2010.小兴安岭典型森林群落生长季土壤呼吸及树干呼吸特征[D].哈尔滨: 东北林业大学.
[22]陆宣承, 文军, 田辉, 等, 2020.若尔盖高寒湿地-大气间水热交换湍流通量的日变化特征分析[J].高原气象, 39(4): 719-728.DOI: 10.7522/j.issn.1000-0534.2019.00073.
[23]倪攀, 金昌杰, 王安志, 等, 2009.科尔沁草地不同大气稳定度下湍流特征谱分析[J].生态学杂志, 28(12): 2495-2502.
[24]陶立英, 曹文俊, 1996.不同天气条件下城郊近地层湍流谱的研究[J].南京气象学院学报, 19(1): 125-129.
[25]温雅婷, 焦冰, 缪启龙, 等, 2012.塔克拉玛干沙漠腹地近地层湍流能谱特征分析[J].中国沙漠, 32(6): 1716-1722.
[26]王介民, 1992.山谷城市的近地层大气湍流谱特征[J].大气科学, 16(1): 11-17.
[27]王少影, 张宇, 吕世华, 等, 2009.金塔绿洲湍流资料的质量控制研究[J].高原气象, 28(6): 1260-1273.
[28]魏伟, 张宏升, 2013.希尔伯特-黄变换技术及在边界层湍流研究中的应用[J].气象学报, 71(6): 1183-1193.
[29]王寅钧, 2014.青藏高原东南缘大理边界层参数化与湍流特征影响研究[D].南京: 南京信息工程大学.
[30]于贵瑞, 张雷明, 孙晓敏, 等, 2004.亚洲区域陆地生态系统碳通量观测研究进展[J].中国科学(地球科学), 34(增刊2): 15-29.
[31]严晓强, 胡泽勇, 孙根厚, 等, 2018.那曲高寒草地上四种地表通量计算方法的对比[J].高原气象, 37(2): 358-370.DOI: 10. 7522/j.issn.1000-0534.2017.00067.
[32]张明达, 张一平, 孙晓敏, 等, 2009.西双版纳热带季节雨林林冠上方湍流谱特征[J].生态学杂志, 28(9): 1779-1786.
[33]张烺, 李跃清, 李英, 等, 2010.青藏高原东部草甸下垫面涡旋相关观测数据的质量控制及评价研究[J].大气科学, 34(4): 703-714.
[34]张宏昇, 2014.大气湍流基础[M].北京: 北京大学出版社, 1-189.
[35]郑新倩, 彭冬梅, 吴烨, 等, 2017.巴丹吉林沙漠北缘拐子湖近地层湍流能谱特征分析[J].沙漠与绿洲气象, 11(5): 63-69.
Outlines

/