Applicability of New Satellites Precipitation Products in Source Region of Yellow River: Using SWAT Model as an Example

  • Zhaochen LIU ,
  • Meixue YANG ,
  • Guoning WAN ,
  • Lizhen CHENG
Expand
  • <sup>1.</sup>State Key Laboratory of Cryospheric Science/ Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China;<sup>2.</sup>University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2019-07-05

  Online published: 2021-04-28

Abstract

In this paper, two kinds of daily satellites precipitation products(TMPA 3B42 and IMERG-Final) are used to drive SWAT hydrological model.The results are compared and analyzed, and the applicability and simulation potential of the new satellite precipitation in the source region of Yellow River (SRYR) are evaluated.The results indicate that: (1) for large-scale watersheds, the results of sensitivity analysis and calibration of parameters for multiple sub-watersheds at the same time are not applicable to each station.Therefore, we choose to make sensitivity analysis and calibration of parameters in each station.Finally, the Nash-Sutcliffe efficiency coefficient (NSE) of the runoff simulation results of the three stations in the validation period are all above 0.50, and the determination coefficients (R2) are all above 0.60.(2) IMERG-Final products are better than TMPA 3B42 products in simulation results.Both of them can simulate the main trends of monthly runoff change in SRYR, but they have overestimated the peak values of runoff.The precision of the new satellite product (GPM) is higher than that of the predecessor satellite product (TRMM).However, the accuracy of the GPM products in high altitude areas needs to be improved and further revised.

Cite this article

Zhaochen LIU , Meixue YANG , Guoning WAN , Lizhen CHENG . Applicability of New Satellites Precipitation Products in Source Region of Yellow River: Using SWAT Model as an Example[J]. Plateau Meteorology, 2021 , 40(2) : 403 -410 . DOI: 10.7522/j.issn.1000-0534.2020.00024

References

[1]Arnold J G, Moriasi D N, Gassman P W, et al, 2012.SWAT: Model use, calibration, and validation[J].Transactions of the ASABE, 55(4): 1491-1508.
[2]Battan L J, 1973.Radar observation of the atmosphere[M].University of Chicago Press.
[3]Beven K.On the generalized kinematic routing method[J].Water Resources Research, 15(5): 37-44.
[4]Dirks K N, Hay J E, Stow C D, et al, 1998.High-resolution studies of rainfall on Norfolk Island: Part II: Interpolation of rainfall data[J].Journal of Hydrology, 208(3-4): 187-193
[5]Fang J, Yang W, Luan Y, et al, 2019.Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China[J].Atmospheric Research, 223: 24-38.
[6]Fischer G, Fnachtergaele F, Sprieler S, et al, 2008.Global Agro-ecological Zones assessment for Agriculture (GAEZ 2008)[C].IIASA, Laxenburg, Austria and FAO, Rome, Italy.
[7]Guo H, Chen S, Bao A, et al, 2016.Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China[J].Atmospheric Research, 176: 121-133.
[8]Hao Z C, Tong K, Liu X L, et al, 2014.Capability of TMPA products to simulate streamflow in upper Yellow and Yangtze River basins on Tibetan Plateau[J].Water Science and Engineering, 7(3): 237-249.
[9]Hirpa F A, Gebremichael M, Hopson T, 2010.Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia[J].Journal of Applied Meteorology and Climatology, 49(5): 1044-1051.
[10]Immerzeel W W, Van Beek L P H, Bierkens M F P, 2010.Climate change will affect the Asian water towers[J].Science, 328(5984): 1382-1385.
[11]IPCC, 2013.Working group I contribution to the IPCC fifth assessment Report[R].Climate Change 2013: The Physical Science Basis: Summary for Policymakers.
[12]Jiang S, Ren L, Hong Y, et al, 2012.Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method[J].Journal of Hydrology (Amsterdam), 452-453: 213-225.
[13]Krajewski W F, Smith J A, 2002.Radar hydrology: Rainfall estimation[J].Advances in Water Resources, 25(8): 1387-1394.
[14]Meng X, Wang H, Lei X, et al, 2017.Hydrological modeling in the Manas River Basin using soil and water assessment tool driven by CMADS[J].Tehnicki Vjesnik-Technical Gazette, 24(2): 525-534.
[15]Radi? V, Bliss A, Beedlow A C, et al, 2014.Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models[J].Climate Dynamics, 42: 37-58.
[16]Sala O E, Rd C F, Armesto J J, et al, 2000.Global biodiversity scenarios for the year 2100[J].Science, 287(5459): 1770-1774.
[17]Salio P, Hobouchian M P, Skabar Y G, et al, 2015.Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network[J].Atmospheric Research, 163: 146-161.
[18]Shi C X, Xie Z H, Qian H, et al, 2011.China land soil moisture EnKF data assimilation based on satellite remote sensing data[J].Science China (Earth Sciences), 54(9): 1430-1440.
[19]Stocker T F, Raible C C, 2005.Climate change: water cycle shifts gear[J].Nature, 434(7035): 830.
[20]Tang G, Ma Y, Long D, et al, 2016.Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over mainland China at multiple spatiotemporal scales[J].Journal of Hydrology, 533: 152-167.
[21]Wang X, Pang G, Yang M, et al, 2018.Precipitation over the Tibetan Plateauduring recent decades: A review based on observations and simulations [J].International Journal of Climatology, 38, 1116-1131.
[22]Ward E, Buytaert W, Peaver L, et al, 2011.Evaluation of precipitation products over complex mountainous terrain: A water resources perspective[J].Advances in Water Resources, 34(10): 1222-1231.
[23]Yao T, Wang Y, Liu S, et al, 2004.Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China[J].Science in China, 47(12): 1065-1075.
[24]Yong B, Ren L L, Hong Y, et al, 2010.Hydrologic evaluation of Multisatellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China[J].Water Resources Research, 46(7): 759-768.
[25]程立真, 杨梅学, 王学佳, 等, 2020.TRMM 3B42 降水产品在洮河中上游的精度评估分析[J].高原气象, 39(1): 185-195. DOI: 10.7522/j.issn.1000-0534.2019.00016.
[26]金晓龙, 邵华, 张弛, 等, 2016.GPM卫星降水数据在天山山区的适用性分析[J].自然资源学报, (12): 106-117.
[27]刘俊峰, 陈仁升, 韩春坛, 等, 2010.多卫星遥感降水数据精度评价[J].水科学进展21(3): 343-348.
[28]刘兆晨, 杨梅学, 王学佳, 等, 2020.GPM和TRMM卫星日降水数据在黄河源区的适用性分析[J].冰川冻土, 42(2): 575-586.
[29]孟现勇, 师春香, 刘时银, 等, 2016.CMADS数据集及其在流域水文模型中的驱动作用——以黑河流域为例[J].人民珠江, 37(7): 1-19.
[30]宁吉才, 刘高焕, 叶宇, 等, 2012.SWAT模型降水输入参数的改进研究[J].自然资源学报, 27(5): 866-875.
[31]邬伦, 吴小娟, 肖晨超, 等, 2010.五种常用降水量插值方法误差时空分布特征研究——以深圳市为例[J].地理与地理信息科学, 26(3): 19-24.
[32]杨军军, 高小红, 李其江, 等, 2013.湟水流域SWAT模型构建及参数不确定性分析[J].水土保持研究, 20(1): 82-88.
Outlines

/