With the purpose of exploring the characteristics of atmospheric particulate pollution at the Mogao Grottoes, the samples of PM2.5 and PM10~2.5 were collected in Cave 16 and exterior environment of Cave 72 from April to December, 2014.The researcher conducted contrastive analysis on the variation and influence factors of the water-soluble ions in the samples, and studied their main sources by the approach of Principal Component Analysis (PCA).The results are as follows: (1) The main wind direction at Mogao Grottoes area is south wind and the frequency of wind with sand is only 0.01%, which is unfavorable to the diffusion of pollutants.(2) The total concentration of water-soluble ions of PM2.5 and PM10~2.5 in the exterior environment of Cave 72 are 6.1±4.0 μg·m-3 and 12.2±9.1 μg·m-3, while in the interior environment of Cave 16 are 3.7±0.8 μg·m-3 and 7.5±1.6 μg·m-3.SO, Ca2+, NO, Na+, and Cl- are the main components of water-soluble ions.As for the proportion of water-soluble ions of PM2.5 and PM10~2.5 in the exterior environment, SO, NO, and Ca2+ together account for 79.24% and 76.81%.In the interior environment, the number is 80.61% and 77.74%.The Secondary ions originate mainly from stationary pollution sources.(3) The ratio of each ion concentration in PM2.5 and PM10~2.5 are 0.33~0.88 (outside the cave) and 0.25~0.94 (inside the cave).9 water-soluble ions are different in terms of their concentration degrees in different particle sizes.Sand storms from March to May, rainfalls from July to September, straw burning in rural areas in November, and coal burning for heating in winter have some effects on water-soluble ions.The number of touristsinside the caves has certain correlation with NH4+ and NO3- from the perspective of PM2.5 (R2=0.27, 0.35), and with NH4+ (R2=0.31) from PM10~2.5.(4) Owing to the sand and dust weathers, the concentration of Cl-, SO, Na+, K+ and Ca2+ increase in the PM2.5 and PM10-2.5 inside and outside the cave.The results indicate that micro-environment at the Mogao Grottoes is mainly influenced by the regional meteorological factors.Therefore, the caves should be closed during inclement weather.(5) The atmospheric environment at Mogao Grottoes area is alkaline.(6) The main resources causing the increase of PM2.5 and PM10~2.5 are crop burning in local areas, secondary pollution sources, sand and dust, and dried-out Daquan River.
Xiaoju YANG
,
Fasi WU
,
Ruihong XU
,
Dongpeng HE
,
Guobin ZHANG
,
Shichang KANG
,
Chaoliu LI
,
Wanfu WANG
. Variation and Source Analysis of Water-Soluble Ions in the Atmospheric Particles of Mogao Grottoes at Dunhuang[J]. Plateau Meteorology, 2021
, 40(2)
: 436
-447
.
DOI: 10.7522/j.issn.1000-0534.2020.00033
[1]Anaf W, Bencs L, Van Grieken R, et al, 2015.Indoor particulate matter in four Belgian heritage sites: Case studies on the deposition of dark-colored and hygroscopic particles [J].Science of the Total Environment, 506: 361-368.DOI: 10.1016/j.scitotenv. 2014.11.018.
[2]Andreae M O, Merlet P, 2001.Emission of trace gases and aerosols from biomass burning [J].Global Biogeochemical Cycles, 15(4): 955-966.DOI: 10.1029/2000gb001382.
[3]Duan Y L, Wu F S, Wang W F, et al, 2018.Differences of microbial community on the wall paintings preserved in situ, and ex situ, of the Tiantishan Grottoes, China [J].International Biodeterioration & Biodegradation, 132: 102-113.DOI: 10.1016/j.ibiod. 2018.02.013.
[4]Li G S, Qu J J, Wang W F, et al, 2012.Overall efficiency of a V-shaped nylon net fence in preventing sand damage to the Mogao Grottoes [J].Sciences in Cold & Arid Regions, 4(2): 163-174.
[5]Ligocki M P, Liu H I H, Cass G R, et al, 1990.Measurements of particle deposition rates inside southern California museums [J].Aerosol Science and Technology, 13(1): 85-101.DOI: 10. 1080/02786829008959426.
[6]Mateos A C, Amarillo A C, Carreras H A, et al, 2018.Land use and air quality in urban environments: Human health risk assessment due to inhalation of airborne particles [J].Environmental Research, 161: 370-380.DOI: 10.1016/j.envres.2017.11.035.
[7]Pipal A S, Satsangi G, Tiwari S, et al, 2014.Study of mineral aerosols in fine (PM<sub>2.5</sub>) and coarse (PM<sub>10</sub>) atmospheric particles over a world heritage site at Agra, India [J].Environmental Technology and Management, 17(6): 538-553.DOI: 10.1504/IJETM. 2014.066523.
[8]Potgieter‐Vermaak S, Horemans B, Anaf W, et al, 2012.Degradation potential of airborne particulate matter at the Alhambra monument: A Raman spectroscopic and electron probe X‐ray microanalysis study [J].Journal of Raman Spectroscopy, 43(11): 1570-1577.DOI: 10.1002/jrs.4052.
[9]Rosina E, Sansonetti A, Erba S, 2017.Focus on soluble salts transport phenomena: The study cases of Leonardo mural paintings at Sala delle Asse (Milan) [J].Construction & Building Materials, 136: 643-652.DOI: 10.1016/j.conbuildmat.2016.08.014.
[10]Tan L H, Zhang W M, Qu J J, et al, 2016.Aeolian sediment transport over gobi: Field studies atop the Mogao Grottoes, China [J].Aeolian Research, 21: 53-60.DOI: 10.1016/j.aeolia. 2016.03.002.
[11]Tétreault J, 2003.Airborne pollutants in museums, galleries, and archives: Risk assessment, control strategies, and preservation management [M].Ottawa: Canadian Conservation Institute.
[12]Wang W F, Ma Y T, Ma X, et al, 2010.Seasonal variations of airborne bacteria in the Mogao Grottoes, Dunhuang, China [J].International Biodeterioration & Biodegradation, 64(6): 309-315.DOI: 10.1016/j.ibiod.2010.03.004.
[13]Worobiec A, Samek L, Karaszkiewicz P, et al, 2008.A seasonal study of atmospheric conditions influenced by the intensive tourist flow in the Royal Museum of Wawel Castle in Cracow, Poland [J].Microchemical Journal, 90(2): 99-106.DOI: 10. 1016/j.microc.2008.04.005.
[14]Yao X, Chan C K, Fang M, et al, 2002.The water-soluble ionic composition of PM<sub>2.5</sub> in Shanghai and Beijing, China [J].Atmospheric Environment, 36(26): 4223-4234.DOI: 10.1016/s1352-2310(02)00342-4.
[15]戴伟, 高佳琪, 曹罡, 等, 2012.深圳市郊区大气中PM<sub>2.5</sub>的特征分析 [J].环境科学, 33(6): 1952-1957.
[16]郭送军, 谭吉华, 段菁春, 等, 2012.广州市灰霾期PM<sub>10</sub>的化学组成对能见度的影响 [J].环境监测管理与技术, 24(3): 24-28.DOI: 10.3969/j.issn.1006-2009.2012.03.006.
[17]侯文芳, 薛平, 张国彬, 等, 2007.莫高窟第217窟微环境监测分析 [J].敦煌研究 (5): 93-97.
[18]贾文婷, 胡塔峰, 曹军骥, 等, 2015.汉阳陵帝陵外藏坑保护展示厅遗址区的微环境及气溶胶理化特征 [J].地球环境学报, 6(5): 307-316.
[19]靳治良, 陈港泉, 夏寅, 等, 2016.硫酸盐与氯化物对壁画的破坏性对比研究-硫酸钠超强的穿透、 迁移及结晶破坏力证据 [J].文物保护与考古科学, 27(1): 29-38.DOI: 10.3969/j.issn.1005-1538.2015.01.005.
[20]李华, 高原, 王春燕, 等, 2014.秦始皇兵马俑博物馆陶器库室内空气质量评价与影响分析 [J].文物保护与考古科学, 26(1): 34-41.
[21]李华, 胡塔峰, 曹军骥, 等, 2015.秦俑博物馆室内气溶胶的演化特征及影响因素 [J].科技导报, 33(6): 46-53.DOI: 10.3981/j.issn.1000-7857.2015.06.007.
[22]李华, 胡塔峰, 杜维莎, 2019.秦兵马俑和汉阳陵遗址保存环境之比较 [J].文物保护与考古科学, 31(2): 53-60.
[23]刘立超, 沈志宝, 王涛, 等, 2005.敦煌地区沙尘气溶胶质量浓度的观测研究 [J].高原气象, 24(5): 765-771.
[24]吕文英, 徐海娟, 王新明, 2010.广州城区秋季大气PM<sub>2.5</sub>中主要水溶性无机离子分析 [J].环境科学与技术, 33(1): 98-101.DOI: 10.3969/j.issn.1003-6504.2010.01.024.
[25]屈建军, 张伟民, 王旭东, 1992.敦煌莫高窟大气降尘的初步观测研究 [J].甘肃环境研究与监测, 6(3): 8-12.
[26]沈新勇, 陈逸智, 郭春燕, 等, 2019.京津冀地区一次雾霾过程的污染分布及来源分析[J].高原气象, 38(6): 1332-1343.DOI: 10.7522 /j.issn.1000-0534.2018.00157.
[27]汪万福, 2018.敦煌莫高窟风沙危害及防治 [M].北京: 科学出版社, 29-38.
[28]汪万福, 王涛, 沈志宝, 等, 2006.敦煌莫高窟区大气环境成分的监测分析 [J].高原气象, 25(1): 164-168.
[29]闫广轩, 杨争, 席冬冬, 等, 2018. 新乡市秋季大气细颗粒物PM<sub>2.5</sub>中水溶性离子特征及其来源解析 [J].环境科学学报, 38(2): 640-648.DOI: 10.13671/j.hjkxxb.2017.0378.
[30]杨善龙, 王旭东, 郭青林, 等, 2017.敦煌莫高窟崖体中盐分分布特征研究 [J].敦煌研究 (4): 125-129.DOI: 10.13584 /j.cnki.issn1000-4106.2017.04.014.
[31]杨文妍, 耿红, 魏海英, 等, 2016.云冈石窟大气细颗粒物水溶性离子污染特征 [J].环境科学与技术, 39(4): 47-52.
[32]尹承美, 何建军, 于丽娟, 等, 2019.多尺度气象条件对济南PM<sub>2.5</sub>污染的影响 [J].高原气象, 38(5): 1120-1128.DOI: 10.7522 /j.issn.1000-0534.2019.00018.
[33]张二科, 曹军骥, 王旭东, 等, 2007.敦煌莫高窟室内外空气质量的初步研究 [J].中国科学院研究生院学报, 24(5): 612-618.DOI: 10.3969/j.issn.1002-1175.2007.05.010.
[34]张帆, 陈颖军, 王晓平, 等, 2014.砣矶岛国家大气背景站PM<sub>2.5</sub>化学组成及季节变化特征 [J].地球化学, 43(4): 317-328.DOI: 10.3969/j.issn.0379-1726.2014.04.001.
[35]张世杰, 2019.云冈石窟大气污染特征及在砂岩风化中的作用 [D].太原: 山西大学.
[36]张艳阁, 徐建中, 余光明, 2017.祁连山老虎沟地区夏季大气颗粒物中水溶性离子的变化特征[J].冰川冻土, 39(5): 1022-1028.DOI: 10.7522/j.issn.1000-0240.2017.0309.
[37]张芝娟, 陈斌, 贾瑞, 等, 2019.全球不同类型气溶胶光学厚度的时空分布特征[J].高原气象, 38(3): 660-672.DOI: 10.7522 /j.issn.1000-0534.2019.00002.
[38]周启友, 李禾澍, 王冬, 等, 2018.莫高窟108窟内空气温湿度的变化过程及其对窟内水汽和热量来源的启示 [J].文物保护与考古科学, 30(3): 53-62.