A Study of the Response of Snow Disaster Frequency to Sea Surface Temperature Forcing Anomaly Forcing over the Qinghai-Xizang Plateau

  • Caihong LIU ,
  • Jinhua YU ,
  • Yanhua YANG
Expand
  • <sup>1.</sup>School of Atmospheric physics,Nanjing University of InformationScience&Technology,Nanjing 210044,Jiangsu,China;<sup>2.</sup>Qinghai Climate Centre,Xining 810001,Qinghai,China

Received date: 2020-01-20

  Online published: 2021-06-28

Abstract

The snow disaster over the Qinghai-Xizang Plateau is the most destructive meteorological disaster in the region, and the causes of its changes have been receiving much attention.In this paper, the daily snow cover data of 72 stations over the Qinghai-Xizang Plateau and the monthly mean sea surface temperature data of the Hadley Center were used, and the optimal feedback mode analysis method combining generalized balanced feedback analysis with principal component analysis (GEFA-EOF) was adopted.We studied the response relationship between the frequency of snow disasters in the Qinghai-Xizang Plateau and the modes of SST anomalies in critical areas, and discussed the contribution of SST anomalies to the frequency of snow disasters and the possible mechanism of their occurrence.The results show that the frequency of snow disasters over the Qinghai-Xizang Plateau responds significantly to the El-Ni?o mode (TP1) and the tropical Indian Ocean temperature dipole mode (TI2) in the equatorial Middle East Pacific Ocean SST anomalies.The contribution of the two modes to the frequency of snow disaster is 45.9%.The response of the snow disaster frequency to the sea temperature anomaly is mainly realized through the atmospheric circulation anomaly associated with it.When the TP1 sea temperature is forcing, the mid-high latitude of Eurasia presents a "+-+" situation from west to east at the height of 500 hPa, forming a typical pattern of two ridges and one trough; when the TI2 is forcing, it mainly causes low-and middle-level water vapor anomalies, the warm and wet air flow from the Arabian sea enters the southern part of the plateau, and the wet air flow from the northwest Pacific enters the northern part of the plateau, providing moisture conditions for snowfall.Under the configuration of this high and low layer, it is prone to snowy years.

Cite this article

Caihong LIU , Jinhua YU , Yanhua YANG . A Study of the Response of Snow Disaster Frequency to Sea Surface Temperature Forcing Anomaly Forcing over the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2021 , 40(3) : 486 -494 . DOI: 10.7522/j.issn.1000-0534.2020.00046

References

[1]Qian Y F, Zheng Y Q, Zhang Y, al et, 2003.Responses of China summer monsoon climate to snow anomaly over the Tibetan Plateau [J].International Journal of Climatology, 23(6): 593-613.
[2]Shaman, Jeffrey, Eli T, 2005.The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the South Asian monsoons[J].Journal of Climate, 18: 2067-2079.
[3]Wen N, Liu Z, Liu Q, al et, 2010.Observed atmospheric responses to global SST variability modes: A unified assessment using GEFA[J].Journal of Climate, 23: 1739-1759.
[4]Yanai M, Li C F, Song Z S, 1992.Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J].Journal of the Meteorological Society of Japan, 70: 319-351.
[5]Yu J H, Chen C, Li T, al et, 2016.Contribution of major SSTA modes to the climate variability of tropical cyclone genesis frequency over the western North Pacific[J].Quarterly Journal of the Royal Meteorological Society, 142: 1171-1181.
[6]Yuan C X, Tozuka T, Yamagata T, 2012.IOD influence on the early winter Tibetan Plateau snow cover: Diagnostic analyses and an AGCM simulation[J].Climate Dynamics, 39(7): 1643-1660.
[7]丁一汇, 2013.中国气候[M].北京: 科学出版社, 83-95.
[8]段安民, 肖志祥, 吴国雄, 2016.1979 -2014年全球变暖背景下青藏高原气候变化特征[J].气候变化研究进展, 12(5): 374-381.
[9]范广洲, 罗四维, 吕世华, 1997.青藏高原冬季积雪异常对东、 南亚初步数值模拟研究[J].高原气象, 16(2): 140-152.
[10]高懋芳, 邱建军, 2011.青藏高原主要自然灾害特点及分布规律研究[J].干旱区资源与环境, 25(8): 101-107.
[11]黄晓清, 杨勇, 石磊, 2013.西藏高原不同时段雪灾的空间分布及大气环流特征[J].中国沙漠, 33(2): 396-402.
[12]黄晓清, 唐叔乙, 次旺顿珠, 2018.气候变暖背景下西藏高原雪灾变化及其与大气环流的关系[J].高原气象, 37(2): 325-332.DOI: 10.7522/j.issn.1000-0534.2017.00038.
[13]姜琪, 罗斯琼, 文小航,等, 2020.1961-2014 年青藏高原积雪时空特征及其影响因子[J].高原气象, 39(1): 24-36.DOI: 10. 7522/j.issn.1000-0534.2019.00022.
[14]江志红, 吴燕珠, 刘征宇, 等, 2013.基于广义平衡反馈方法的 2009/2010 年中国冬季气温异常型的诊断[J].热带气象学报, 29(1): 28-36.
[15]梁潇云, 钱正安, 李万元, 2002.青藏高原东部牧区雪灾的环流型及水汽场分析[J].高原气象, 21(4): 359-367.
[16]刘华强, 朱其国, 黄雪辉, 2006, 青藏高原积雪对强ENSO事件的响应[C].第三届长三角气象科技论坛论文集, 75-80.
[17]马丽娟, 2008.近50年青藏高原积雪的时空变化特征及其与大气环流因子的关系[D].兰州: 中国科学院研究院, 66-85.
[18]马荣, 2018.1979 -2016年西北干旱区积雪变化特征及其成因分析[D].兰州: 西北师范大学, 41-43.
[19]施能, 顾骏强, 黄先香, 等, 2004.合成风场的统计检验和蒙特卡洛检验[J].大气科学, 28(6): 950-956.
[20]韦志刚, 2001.青藏高原积雪异常的持续性研究[J].冰川冻土, 23(3): 225-230.
[21]韦志刚, 黄荣辉, 陈文, 等, 2005.青藏高原冬春积雪年际振荡成因分析[J].冰川冻土, 27(4): 491-498.
[22]温克刚, 刘光轩, 2008, 中国气象灾害大典(西藏卷)[M].北京: 气象出版社, 26-58.
[23]温克刚, 王莘, 2007, 中国气象灾害大典(青海卷)[M].北京: 气象出版社, 167-168.
[24]魏红成, 郑彬, 王伟, 2013.南海夏季风对热带海洋海温异常强迫响应的GEFA估算[J].科学技术与工程, 13(22): 6376-6385.
[25]徐小玉, 王亚非, 2016.ENSO对青藏高原雪深的影响及持续性分析[J].高原气象, 35(1): 1-12.DOI: 10.7522/j.issn.1000-0534. 2014.00128.
[26]于乐江, 胡敦欣, 2008.青藏高原春季积雪在南海夏季风爆发过程中的作用[J].地球物理学报, 51(6): 1682-1694.
[27]张涛涛, 2013.气候变化下青藏高原雪灾趋势判断及相关机理分析[D].西安: 陕西师范大学, 13-15.
[28]郑益群, 钱永甫, 苗曼倩, 2000.青藏高原积雪对中国夏季风气候的影响[J].大气科学, 24(6): 761-773.
Outlines

/