The observation data of different underlying surfaces (desert, cornfield, wetland, populus, mixed forest of populus and tamarix) in the middle and lower reaches of Heihe River basin are selected to study the changes of energy budget on different underlying surfaces.The influence of different meteorological factors and irrigation on the latent heat flux transport is discussed.The results show that the annual variation of latent heat flux is consistent with those of downward short-wave radiation and air temperature.The energy budgets of different underlying surfaces were significantly different.The average monthly peak of latent heat in corn fields is up to 200 W·m-2, while that in desert is only 100 W·m-2.The seasonal variation range of latent heat flux on the underlying surface of the desert was smaller, and the seasonal variation range of wetland, mixed forest and Populus were more obvious and larger, among which wetland was the largest.The latent heat flux on the undersurface of cornfield is greatly affected by irrigation.Irrigation can make a sudden increase in soil moisture and a rapid increase in the latent heat flux.The surface heat flux accounts for a small part in the energy budget and has little change with the seasons.
Yuxuan WANG
,
Yinhuan AO
,
Zhaoguo LI
,
Wenjing LI
. Research of the Difference of Energy Budget and Its Cause in Different Types of Underlying Surfaces in the Middle and Lower Reaches of Heihe River[J]. Plateau Meteorology, 2021
, 40(3)
: 495
-509
.
DOI: 10.7522/j.issn.1000-0534.2020.00100
[1]Bhumralkar C M, 1975.Numerical experiments on the computation of ground surface temperature in an atmospheric General Circulation Model[J].Journal of Applied Meteorology.14(7): 1246-1258.DOI: 10.1175/1520-0450(1975)0142.0.CO; 2.
[2]Chen S Q, Wen L J, Lv S H, al et, 2006.Analysis of characteristics of radiation on different underlying surfzce in Jinta Oasis[J].Acta Energiae Solaris Sinica, 27(7): 713-718.DOI: 10.1088/1009-1963/15/8/024.
[3]Cheng G D, Li X, Zhao W Z, al et, 2014.Integrated study of the water-ecosystem-economy in the Heihe River Basin[J].National Science Review, 1(3): 413-428.DOI: 10.1093/nsr/nwu017.
[4]Heusinkveld B G, Jacobs A F G, Holtslag A A M, al et, 2004.Surface energy balance closure in an arid region: Role of soil heat flux[J].Agricultural & Forest Meteorology, 122(2): 21-37.DOI: 10.1016/j.agrformet.2003.09.005.
[5]Jiao Q K, 2011.The surface energy budget in the permafrost region of the Tibetan Plateau[J].Atmospheric Research, 102(4): 397-407.DOI: 10.1016/j.atmosres.2011.09.001.
[6]Mason P, 1995, Atmospheric boundary layer flows: Their structure and measurement[J].Boundary-Layer Meteorology, 72(1/2): 213-214.DOI: 10.1007/BF00712396
[7]Li X, Cheng G D, Liu S M, al et, 2013.Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design[J].Bulletin of the American Meteorological Society, 94(8): 1145-1160.DOI: 10.1175/BAMS-D-12-00154.1.
[8]Li X M, Lu L, Yang W F, al et, 2012.Estimation of evapotranspiration in an arid region by remote sensing—A case study in the middle reaches of the Heihe River Basin[J].International Journal of Applied Earth Observation & Geoinformation, 17: 85-93.DOI: 10.1016/j.jag.2011.09.008.
[9]Gu L L, Hu Z Y, Yao J M, al et, 2017.Actual and reference evapotranspiration in a cornfield in the Zhangye Oasis, Northwestern China[J].Water, 9(7): 499.DOI: 10.3390/w9070499.
[10]Liu S M, Li X, Xu Z W, al et, 2018.The Heihe integrated observatory network: A basin-scale land surface processes observatory in China[J].Vadose Zone Journal, 17(1): 1-21.DOI: 10.2136/vzj2018.04.0072.
[11]Liu S M, Xu Z W, Wang W Z, al et, 2011.A comparison of eddy-covariance and large aperture scintillomemeasurements with respect to the energy balance closure problem[J].Hydrology & Earth System Sciences, 15(4): 1291-1306.DOI: 10.5194/hess-15-1291-2011.
[12]Meng X H, Lü S H, Gao Y H, al et, 2015.Simulated effects of soil moisture on oasis self-maintenance in a surrounding desert environment in Northwest China[J].International Journal of Climatology: A Journal of the Royal Meteorological Society, 35(14): 4116-4125.DOI: 10.1002/joc.4271.
[13]Moore C J, 1986.Frequency response corrections for eddy correlation systems[J].Boundary-Layer Meteorology, 37(1/2): 17-35.DOI: 10.1007/BF00122754.
[14]Osterkamp T E, 1987.Freezing and thawing of soils and permafrost containing unfrozen water or brine[J].Water Resources Research, 23(12): 2279-2285.DOI: 10.1029/WR023i012p02279.
[15]Schotanus P, Nieuwstadt F T M, Bruin H A R, 1983, Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes[J].Boundary-Layer Meteorology, 26(1): 81-93.DOI: 10.1007/BF00164332.
[16]Webb E K, 1982.On the correction of flux measurements for effects of heat and water vapour transfer[J].Boundary Layer Meteorology, 23(2): 251-254.DOI: 10.1007/BF00123301.
[17]Wen L J, Lv S H, Chen S Q, al et, 2007.Characteristics of radiation over oasis under different soil moisture conditions in clear days Summer[J].Taiyangneng Xuebao/acta Energiae Solaris Sinica, 28(5): 567-572.DOI: 10.1016/S1872-5813(07)60034-6.
[18]Zhao L W, Zhao W Z, 2014.Evapotranspiration of an oasis-desert transition zone in the middle stream of Heihe River, Northwest China[J].Journal of Arid Land, 6(5): 529-539.DOI: 10.1007/s40333-014-0061-1.
[19]Zhang X Z, Xiong Z, Tang Q H, 2017, Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China[J].Journal of Geophysical Research: Atmospheres, 122(15): 7881-7895.DOI: 10.1002/2017JD026732.
[20]Zhong B, Ma P, Nie A H, al et, 2014.Land cover mapping using time series HJ-1/CCD data[J].Science China Earth Sciences, 57(8): 1790-1799.DOI: 10.1007/s11430-014-4877-5.
[21]Zhong B, Yang A, Nie A, al et, 2016.Finer resolution land-cover mapping using multiple classifiers and multisource remotely sensed data in the Heihe River Basin[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 8(10): 4973-4992.DOI: 10.1109/JSTARS.2015.2461453.
[22]奥银焕, 吕世华, 陈世强, 等, 2005.夏季金塔绿洲及邻近戈壁的冷湿舌及边界层特征分析[J].高原气象, 24(4): 503-508.
[23]陈萍萍, 2018.大气强迫及地表覆盖数据变化对土壤温湿度模拟影响研究[D].南京: 南京信息工程大学.
[24]范丽军, 韦志刚, 董文杰, 等, 2002.西北干旱区地表辐射特性的初步研究[J].高原气象, 21(3): 309-314.
[25]葛骏, 余晔, 李振朝, 等, 2016.青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J].高原气象, 35(3): 608-620.DOI: 10.7522/j.issn.1000-0534.2016.00032.
[26]胡隐樵, 杨选利, 张强, 等, 1992.The characters of energy budget on the gobi and desert surface in Hexi region [J].Acta Meteorologica Sinica, (1): 82-91.
[27]惠小英, 王澄海, 左洪超, 等, 2005.中国北方干旱区感热及潜热的异常特征[J].高原气象, 24(3): 415-421.
[28]李芳, 李元恒, 2019.黑河中游绿洲化地表特征参数研究[J].生态环境学报, 28(8): 1540-1547.
[29]李君, 许振柱, 王云龙, 等, 2007.玉米农田水热通量动态与能量闭合分析[J], 植物生态学报, (6): 148-160.
[30]李鑫, 2017.稻麦轮作田下垫面的感热和潜热通量特征分析[D].南京: 南京信息工程大学.
[31]李振朝, 韦志刚, 吕世华, 等, 2007.河西地区地表感热特征分析[J].高原气象, 26(2): 293-299.
[32]刘婵, 刘冰, 赵文智, 等, 2018.黑河流域植被水分利用效率时空分异及其对降水和气温的响应[J].生态学报, 40(3): 888-899.DOI: 10.5846/stxb201810282323.
[33]刘绍民, 李新, 车涛, 等, 2019.祁连山综合观测网: 黑河流域地表过程综合观测网(四道桥超级站涡动相关仪-2018)[DB/OL].国家青藏高原科学数据中心.[2020-08-24].DOI: 10.11888/Meteoro.tpdc.270782.
[34]罗斯琼, 陈世强, 吕世华, 2005.不同土壤湿度条件下绿洲边界层特征的敏感性试验[J].高原气象, 24(4): 471-477.
[35]焦丹丹, 吉喜斌, 金博文, 等, 2019.西北干旱区河西走廊荒漠绿洲土地覆盖类型与蒸散的关系研究——基于Landsat 8和ZY3数据融合[J].生态学报, 39(19): 143-155.
[36]萨如拉, 豪树奇, 张秋良, 等, 2006.额济纳胡杨林土壤含水量时空变化的研究[J].林业资源管理, (1): 59-62.DOI: 10. 3969/j.issn.1002-6622.2006.01.015.
[37]宋乃平, 吴旭东, 潘军, 等, 2015.荒漠草原人工柠条林对土壤质地演进过程的影响[J].浙江大学学报(农业与生命科学版), 41(6): 703-711.DOI: 10.3785/j.issn.1008-9209.2015.05.291.
[38]苏永中, 杨晓, 杨荣, 2014.黑河中游边缘荒漠-绿洲非饱和带土壤质地对土壤氮积累与地下水氮污染的影响[J].环境科学, 2014(10): 3683-3691.DOI: 10.13227/j.hjkx.2014.10.007.
[39]孙俊, 胡泽勇, 荀学义, 等, 2011.黑河中上游不同下垫面反照率特征及其影响因子分析[J].高原气象, 30(3): 607-613.
[40]王维真, 徐自为, 刘绍民, 等, 2009.黑河流域不同下垫面水热通量特征分析[J].地球科学进展, 24(7): 714-723.
[41]武利阳, 左洪超, 冯锦明, 2018.华北平原地下水灌溉对区域气候影响的数值模拟[J].气象学报, 76(4): 145-158.DOI: 10. 11676/qxxb2018.017.
[42]吴莹, 吴世新, 张娟, 等, 2014.基于多重时空数据的新疆绿洲研究[J].干旱区地理(汉文版), 37(2): 333-341.
[43]夏露, 张强, 2014.黄土高原地表能量平衡分量年际变化及其对气候波动的响应[J].物理学报, 63(11): 432-442.DOI: 10. 7498/aps.63.119201.
[44]谢美玲, 2012.基于土壤水分下限滴灌红枣灌溉制度研究[D].乌鲁木齐: 新疆农业大学.
[45]闫昕旸, 张强, 闫晓敏, 等, 2019.全球干旱区分布特征及成因机制研究进展[J].地球科学进展, 34(8): 826-841.
[46]阳坤, 王介民, 2009.一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J].中国科学(地球科学), 2008 (2): 243-250.DOI: 10.3724/SP.J.1005.2008.01083.
[47]杨启东, 左洪超, 杨扬, 等, 2012.近地层能量闭合度对陆面过程模式影响[J].地球物理学报, 55(9): 2876-2888.DOI: 10.6038/j.issn.0001-5733.2012.09.007.
[48]张芬, 刘绍民, 徐自为, 等, 2016.张掖绿洲-荒漠区域近地层微气象与水热交换特征[J].高原气象, 35(5): 1233-1247.DOI: 10.7522/j.issn.1000-0534.2015.00071.
[49]仲波, 杨爱霞, 2016.黑河生态水文遥感试验: 黑河流域土地利用覆被数据集[DS/OL].[2020-08-25].国家青藏高原科学数据中心.DOI: 10.3972/hiwater.155.2014.db.