Tracking Diagnosis Analysis of Grid Precipitation Forecast based on Time-Domain Object

  • Hongfang ZHANG ,
  • Liujie PAN ,
  • Shan LU ,
  • Xiaoxuan JU ,
  • Yueqin SHI
Expand
  • <sup>1.</sup>Shaanxi Meteorological Service Centre,Xi’an 710014,Shaanxi,China;<sup>2.</sup>Shaanxi Meteorological Observatory,Xi’an 710014,Shaanxi,China;<sup>3.</sup>Chinese Academy of Meteorological Sciences,Beijing 100081,China

Received date: 2019-11-25

  Online published: 2021-06-28

Abstract

Understanding the time and position deviation of model precipitation forecast is very important to improve the forecast accuracy, but the traditional point-to-point verify methodscan not do anything about it.Based on the precipitation forecast data of the European Center for Medium-Range Weather Forecasts (ECMWF) from June to August of 2018 and 2019, the object-based diagnostic evaluation (MODE) and time domain diagnostic analysis methods (MTD) are used to evaluate the life cycle, initial occurrence and dissipation of the model precipitation forecast objects.The main results are as follows: (1) Case analysis shows that MTD can easily extract three-dimensional precipitation objects, thereby objectively describing the start and end time of the objects, and has unique advantages in evaluating the time deviation of precipitation objects.(2) Under the low threshold, the model forecast describes the spatial distribution of precipitation objects well, but the number of objects is less than that of observations.As the precipitation threshold increases, the frequency of forecasting and observing precipitation objects shows a significant difference, indicating that the location of heavy precipitationforecast still needs to be improved.(3) The precipitation objects are defined with the minimum convolution radius and precipitation threshold, 80% of the precipitation objects last less than 15 hours, and the objects life cycle decrease with the increase of the precipitation threshold and the convolution radius.(4) Compared with observations, the duration of 3D precipitation forecast objects is shorter and the moving speed is slower.

Cite this article

Hongfang ZHANG , Liujie PAN , Shan LU , Xiaoxuan JU , Yueqin SHI . Tracking Diagnosis Analysis of Grid Precipitation Forecast based on Time-Domain Object[J]. Plateau Meteorology, 2021 , 40(3) : 559 -568 . DOI: 10.7522/j.issn.1000-0534.2020.00021

References

[1]Davis C A, Brown B, Bullock R, 2006a.Object-based verificationof precipitation forecasts.Part I: Methodology andapplication to mesoscale rain areas [J].Monthly Weather Review, 134(7): 1772-1784.DOI: 10.1175/M-WR3145.1.
[2]Davis C A, Brown B, Bullock R, 2006b.Object-based verification of precipitationforecasts.Part II: Application to convective rain systems [J].Monthly Weather Review, 134(7): 1785-1795.DOI: 10.1175/MWR3146.1.
[3]Duda J D, Gallus W A, 2013.The impact of large-scaleforcing on skill of simulated convective initiation and upscaleevolution with convection-allowing gridspacing inthe WRF [J].Weather and Forecasting, 28(4): 994-1018.DOI: 10.1175/WAF-D-13-00005.1.
[4]Johnson A, Wang X, Kong F, al et, 2011a.Hierarchical clusteranalysis of a convection-allowing ensemble during the HazardousWeather Tested 2009 Spring Experiment.Part I: Development of the object-oriented cluster analysis methodfor precipitation fields [J].Monthly Weather Review, 139(12): 3673-3693.DOI: 10.1175/MWR-D-11-00015.1.
[5]Johnson A, Wang X, Kong F, al et, 2011b.Hierarchical cluster analysis ofa convection-allowing ensemble during the HazardousWeather Tested 2009 Spring Experiment.Part II: Ensembleclustering over the whole experiment period[J].Monthly Weather Review, 139(12): 3694-3710.DOI: 10.1175/MWR-D-11-00016.1.
[6]Johnson A, Wang X, 2012.Verification and calibration ofneighborhood and object-based probabilistic precipitationforecasts from a multimode convection-allowing ensemble[J].Monthly Weather Review, 140(9): 3054-3077.DOI: 10.1175/MWR-D-11-00356.1.
[7]Johnson A, Wang X, Kong K, al et, 2013.Object-based evaluation of theimpact of horizontal grid spacing on convection-allowingforecasts[J].Monthly Weather Review, 141(10): 3413-3425.DOI: 10.1175/MWR-D-13-00027.1.
[8]Lorenz E N, 1969.The predictability of a flow which possesses many scales of motion [J].Tellus, 21(3), 289-307, DOI: 10.1111/j.2153-3490.1969.tb00444.x.
[9]潘留杰, 张宏芳, 朱伟军, 等, 2013.ECMWF模式对东北半球气象要素场预报能力的检验[J].气候与环境研究, 18 (1): 112-123.DOI: 10.3878/j.issn.1006-9585.2012.11097.
[10]潘旸, 沈艳, 宇婧婧, 等, 2012.基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验[J].气象学报, 70(6): 1381-1389.DOI: 10.11676/qxxb2012.116.
[11]潘旸, 谷军霞, 徐宾, 等, 2018.多源降水数据融合研究及应用进展[J].气象科技进展, 8(1): 143-152.DOI: 10.3969/j.issn. 2095-1973.2018.01.019.
[12]潘留杰, 薛春芳, 张宏芳, 等, 2016.两个集合预报系统对秦岭及周边降水预报性能对比[J].应用气象学报, 27(6): 676—687.DOI: 10.11898/1001-7313.20160604.
[13]潘留杰, 薛春芳, 张宏芳, 等, 2017.三种高分辨率格点降水预报检验方法的对比[J].气候与环境研究, 22(1): 45-58.DOI: 10.3878/j.issn.1006-9585.2016.16012.
[14]潘留杰, 张宏芳, 王建鹏, 等, 2014a.日本高分辨率模式对中国降水预报能力的客观检验[J].高原气象, 33(2): 483-494.DOI: 10.7522/j.issn.1000-0534.2012.00188.
[15]潘留杰, 张宏芳, 王建鹏, 2014b.数值天气预报检验方法研究进展[J].地球科学进展, 29(3): 327-335.DOI: 10.11867/j.issn. 1001-8166.2014.03.0327.
[16]沈艳, 潘旸, 宇婧婧, 等, 2012.中国区域小时降水量融合产品的质量评估[J].大气科学学报, 36(1): 37-46.
[17]石彦军, 任余龙, 王式功, 等, 2012.BCC_CSM气候模式对中国区域气候变化模拟能力的检验[J].高原气象, 31(5): 1257-1267.
[18]王颖, 张镭, 胡菊, 等, 2010.WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J].高原气象, 29(6): 1397-1407.
[19]肖柳斯, 张阿思, 闵超, 等, 2019.GPM卫星降水产品在台风极端降水过程的误差评估[J].高原气象, 38(5): 993-1003.DOI: 10.7522/j.issn.1000-0534.2018.00143.
[20]薛春芳, 潘留杰, 2016.基于MODE方法的日本细网格模式降水预报的诊断分析[J].高原气象, 35(2): 406-418.DOI: 10.7522/j.issn.1000-0534.2015.00010.
[21]杨显玉, 文军, 牛广山, 等, 2020.西北地区的快速更新循环同化预报系统性能检验和评估[J].高原气象, 39(1): 90-101.DOI: 10.7522/j.issn.1000-0534.2019.00010.
[22]张丹琦, 孙凤华, 张耀存, 2019.基于BCC第二代短期气候预测模式系统的中国夏季降水季节预测评估[J].高原气象, 38(6): 1229-1240.DOI: 10.7522/j.issn.1000-0534.2018.00149.
[23]张宏芳, 潘留杰, 杨新, 2014.ECMWF、 日本高分辨率模式降水预报能力的对比分析[J].气象, 40(4): 424-432.DOI: 10.7 519/j.issn.1000-0526.2014.04.004.
[24]张利红, 何光碧, 2014.GRAPES_Meso模式对2011年夏季青藏高原东部及周边区域的预报检验[J].高原气象, 33(1): 14-25.DOI: 10.7522/j.issn.1000-0534.2012.00175.
Outlines

/