Analysis on the Evolution Characteristics of Storm Parameters and ZDR Column for Two Long Life Supercells

  • Xiuguang DIAO ,
  • Chuanfeng YANG ,
  • Qian ZHANG ,
  • Qingli Lü
Expand
  • Shandong Meteorological Observatory,Jinan 250031,Shandong,China

Received date: 2019-11-25

  Online published: 2021-06-28

Abstract

Based on the S-band dual-polarization Doppler weather radar data of Jinan, combined with sounding and ground data, the evolution characteristics of storm parameters and ZDR column of two long-lived supercells are analyzed.The results show that the two processes have strong thermodynamic instability, medium or above intensity of CAPE and vertical wind shear from 0 to 6 km, which is conducive to the generation and maintenance of highly organized storms.The two supercell storms lasted for more than 4 hours, and the high reflectivity factor (≥60 dBZ) maintained for more than 3 hours, the average DBZM value was 65.8 dBZ, at the same time, both supercell storms had large C-VIL.The moving direction of the two strong storms is basically the same, but the difference of moving speed is obvious.The main factor leading to the difference of moving speed is the difference of guiding airflow of 500 hPa.The ZDR column is the ZDR high value area above the environmental 0 ℃ level and located in the strong updraft zone of the storm, indicating a small number of large oblate raindrops and a few horizontally oriented wet ice particles.The existence of mixed phase particles in ZDR column leads to low CC.The storm developed rapidly after the appearance of ZDR column and weakened gradually after the disappearance of ZDR column.ZDR column can be used as one of the early warning of hail.The appearance of ZDR column indicates that the strength and height of the updraft in the storm increase, which indicates that the storm will develop rapidly.The disappearance of ZDR column indicates that the intensity and the height of updraft in the storm will decrease, and indicates that the centroid of the storm will be reduced and the intensity of the storm will be weakened.The top of the ZDR column of the two storms is obviously different, but there is no significant difference between the top of the ZDR column and the height of 0 ℃ layer.

Key words: Supercell; updraft; ZDR; difference

Cite this article

Xiuguang DIAO , Chuanfeng YANG , Qian ZHANG , Qingli Lü . Analysis on the Evolution Characteristics of Storm Parameters and ZDR Column for Two Long Life Supercells[J]. Plateau Meteorology, 2021 , 40(3) : 580 -589 . DOI: 10.7522/j.issn.1000-0534.2020.00034

References

[1]Bigg E K, 1953.The formation of atmospheric ice crystals by the freezing of droplets[J].Quarterly Journal of the Royal Meteorological Society, 79(342): 510-519.
[2]Brandes E A, Vivekanandan J, Tuttle J D, al et, 1995.A study of thunderstorm microphysics with multiparameter radar and aircraft observations[J].Monthly Weather Review, 123(11): 3129- 3143.
[3]Bringi V N, Liu L, Kennedy P C, al et, 1996.Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study[J].Meteorology & Atmospheric Physics, 59(1): 3-31.
[4]Caylor I J, Illingworth A J, 1987.Radar observations and modelling of warm rain initiation[J].Quarterly Journal of the Royal Meteorological Society, 113(487): 1171-1191.
[5]Conway J W, Zrnic D S, 1993.A study of embryo production and hail growth using dual-Doppler and multi parameter radars[J].Monthly Weather Review, 121(9): 2511-2528
[6]Dawson D T, Mansell E R, Jung Y, al et, 2014.Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail[J].Journal of Atmospheric Sciences, 71(1): 276-299.
[7]Hall M P M, Cherry S M, Goddard J W F, al et, 1980.Rain drop sizes and rainfall rate measured by dual-polarization radar[J].Nature, 285(5762): 195-198.
[8]Hall M P M, Goddard J W F, Cherry S M, 1984.Identi?cation of hydrometeors and other targets by dual-polarization radar[J].Radio Science, 19(1): 132-140.
[9]Hubbert J C, Carey L D, Bolen S, 1998.CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado[J].Journal of Applied Meteorology, 37(8): 749-775.
[10]Hubbert J C, Wilson J W, Weckwerth T M, al et, 2018.S-Pol’s polarimetric data reveals detailed storm features (and insect behavior) [J].Bulletin of the American Meteorological Society, 99(10): 2045-2060.
[11]Illingworth A J, Goddard J W F, Cherry S M, 1987.Polarization radar studies of precipitation development in convective storms[J].Quarterly Journal of the Royal Meteorological Society, 113(476): 469-489.
[12]Johnson D A, Hallett J, 1968.Freezing and shattering of supercooled water drops[J].Quarterly Journal of the Royal Meteorological Society, 94(402): 468-482.
[13]Kumjian M R, Ryzhkov A V, 2008.Polarimetric Signatures in Supercell Thunderstorms[J].Journal of Applied Meteorology and Climatology, 47(7): 1940-1961.
[14]Kumjian M R, Ganson S M, Ryzhkov A V, 2012.Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model[J].Journal of the Atmospheric Sciences, 69(12): 3471-3490
[15]Kumjian M R, 2013a.Principles and applications of dual-polarization weather radar.Part I: Description of the polarimetric radar variables[J].Journal of Operational Meteorology, 1 (19): 226-242.
[16]Kumjian M R, 2013b.Principles and applications of dual-polarization weather radar.Part II: Warm-and cold-season applications[J].Journal of Operational Meteorology, 1 (20): 243-264
[17]Kumjian M R, Ryzhkov A V, Phillips V T, 2014.The Anatomy and Physics of <i>Z</i><sub>DR</sub> Columns: Investigating a Polarimetric Radar Signature with a Spectral Bin Microphysical Model[J].Journal of Applied Meteorology & Climatology, 53(7): 1820-1842.
[18]Loney M L, Zrnic′ D S, Straka J M, al et, 2002.Enhanced polarimetric radar signatures above the melting level in a supercell storm[J].Journal of Applied Meteorology, 41(12): 1179-1194.
[19]Picca J, Ryzhkov A V, 2012.A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm[J].Monthly Weather Review, 140(4): 1385-1403.
[20]Ryzhkov A V, Zhuravlyov V B, Rybakova N A, 1994.Preliminary results of X-band polarization radar studies of clouds and precipitation[J].Journal of Atmospheric & Oceanic Technology, 11(1): 132-139.
[21]Ryzhkov A V, Pinsky M, Pokrovsky A, al et, 2011.Polarimetric radar observation operator for a cloud model with spectral microphysics[J].Journal of Applied Meteorology & Climatology, 50(4): 873-894.
[22]Snyder J C, Bluestein H B, Jung Y, al et, 2010.The structure and time evolution of polarimetric signatures in severe convective storms based on high resolution numerical simulations and data from a mobile, dual-polarized, X-band Doppler radar[C].25th Conf on Severe Local Storms, Denver, CO, Amer Meteor Soc, P8.8.
[23]Tuttle J D, Bringi V N, Orville H D, al et, 1989.Multiparameter radar study of a microburst: Comparison with model results[J].Journal of Atmospheric Sciences, 46(5): 601-620.
[24]曹俊武, 刘黎平, 2007.双线偏振雷达判别降水粒子类型技术及其检验[J].高原气象, 26(1): 116-127.
[25]曹杨, 苏德斌, 周筠珺, 等, 2016.C波段双线偏振多普勒雷达差分相位质量分析[J].高原气象, 35(2): 548-559.DOI: 10.7522/j.issn.1000-0534.2014.00154.
[26]杜牧云, 刘黎平, 胡志群, 等, 2013.双偏振多普勒雷达资料质量分析[J].气象学报, 71(1): 146-158.
[27]杜牧云, 王斌, 肖艳姣, 等, 2019.X波段双线偏振雷达青藏高原观测资料质量分析[J].高原气象, 38(2): 278-287.DOI: 10. 7522/j.jssn.1000-0534.2018.00085.
[28]胡志群, 刘黎平, 吴林林, 2014.C波段偏振雷达几种系统误差标定方法对比分析[J].高原气象, 33(1): 221-231.DOI: 10.7522/j.issn.1000-0534.2013.00134.
[29]李喆, 王崇文, 李春化, 等, 2014.双发双收双线偏振天气雷达差分反射率工程标定方法[J].气象科技, 42(6): 951-956.
[30]刘黎平, 钱永甫, 1996.用双线偏振雷达研究云内粒子相态及尺度的空间分布[J].气象学报, 54(5): 590-599.
[31]马建立, 陈明轩, 李思腾, 等, 2019.线性规划在X波段双线偏振多普勒天气雷达差分传播相移质量控制中的应用[J].气象学报, 77(3): 516-528.
[32]梅垚, 胡志群, 黄兴友, 等, 2018.青藏高原对流云的偏振雷达观测研究[J].气象学报, 76(6): 1014-1028.
[33]吴林林, 刘黎平, 袁野, 等, 2015.C波段车载双偏振雷达ZDR资料处理方法研究[J].高原气象, 34(1): 279-287.DOI: 10.7522/j.issn.1000-0534.2013.00102.
[34]王洪, 万齐林, 尹金方, 丁伟钰, 2016.双线偏振雷达资料在数值模式中的应用: 模拟器的构建[J].气象学报, 74(2): 229-243.
[35]王洪, 吴乃庚, 万齐林, 等, 2018.一次华南超级单体风暴的S波段偏振雷达观测分析[J].气象学报, 76(1): 92-103.
[36]王超, 吴翀, 刘黎平, 2019.X波段双线偏振雷达数据质量分析及控制方法[J].高原气象, 38(3): 636-649.DOI: 10.7522/j.issn. 1000-0534.2018.00096.
[37]温静, 2017.中国东部一次飑线过程的微物理结构分析和数值模拟[D].南京: 南京大学.
[38]杨忠林, 赵坤, 徐坤, 等, 2019.江淮梅雨期极端对流微物理特征的双偏振雷达观测研究[J].气象学报, 77(1): 58-72.
[39]赵世颖, 李柏, 陈晓辉, 等, 2015.基于交叉-平行法的双偏振雷达差分反射率硬件定标[J].气象科技, 43(5): 775-782.
[40]张鸿发, 郄秀书, 王致君, 等, 2001.偏振雷达观测强对流雹暴云[J].大气科学, 25(1): 38-48.
[41]张廷龙, 杨静, 楚荣忠, 等, 2012.平凉一次雷暴云内的降水粒子分布及其电学特征的探讨[J].高原气象, 31(4): 1091-1099.
[42]张学泰, 李文婷, 彭窈, 等, 2017.清远一次超级单体降雹的双偏振雷达特征分析[J].广东气象, 39(4): 41-44.
[43]张羽, 胡东明, 李怀宇, 2017.广州双偏振天气雷达在短时强降水中的初步应用[J].广东气象, 39(2): 26 -29.
Outlines

/