Study on the Climatic and Discriminative Characteristics of Tropospheric and Lower Stratospheric Gravity Wave of Taiyuan

  • Huhua CHENG ,
  • Liang ZHAO ,
  • Shuai WU ,
  • Juan LI ,
  • Qifa CAI
Expand
  • <sup>1.</sup>63729 Troops of Chinese People's Liberation Army,Taiyuan 030027,Shanxi,China;<sup>2.</sup>State Key Laboratory of Numerical Modeling for Atmosphere Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China;<sup>3.</sup>32021 Troops of PLA,Beijin g 100094,China;<sup>4.</sup>61741 Troops of PLA,Beijing 100094,China

Received date: 2019-09-05

  Online published: 2021-06-28

Abstract

Atmospheric gravity waves have a significant effect on the dynamic and thermal structure of the global atmosphere.Studying the climatic characteristic of gravity wave parameters constitute an important part of the parameterization of gravity waves in the development of a global atmospheric model.By introducing the effect of gravity waves are conducive to improve the forecasting ability of the atmospheric model.In this paper, based on the high-vertical resolution sounding data of Taiyuan (112.55°E, 37.78°N) from 2014 to 2017, a study is conducted on the climatic characteristics of the atmospheric gravity wave parameters of the troposphere (2~9 km) and lower stratosphere (17~24 km) and their differences in between.The results show that: (1) From January to December, compared with the troposphere, the average gravity wave horizontal wavelength, period, horizontal phase velocity and fraction of upgoing energy are larger in the lower stratosphere, the gravity wave vertical wavelength is smaller; moreover, gravity wave ground-based horizontal group velocity in lower stratosphere is higher in February and from May to September and lower in other months; (2) Gravity wave parameters in the troposphere and lower stratosphere show larger deviation and absolute difference, and weak correlation; (3) Gravity wave parameters in the troposphere and lower stratosphere and their deviation in between show significant difference in their occupancy distribution within different ranges.By studying the climatic characteristics of gravity wave parameters in the troposphere and lower stratosphere over Taiyuan, and characteristics of their differences are further supplemented the climatic characteristics of atmospheric gravity wave parameters in China; it is beneficial to the development of a parameterization scheme that is more suitable for the Chinese regional numerical prediction model.

Cite this article

Huhua CHENG , Liang ZHAO , Shuai WU , Juan LI , Qifa CAI . Study on the Climatic and Discriminative Characteristics of Tropospheric and Lower Stratospheric Gravity Wave of Taiyuan[J]. Plateau Meteorology, 2021 , 40(3) : 590 -602 . DOI: 10.7522/j.issn.1000-0534.2020.00042

References

[1]Allen S J, Vincent R A, 1995.Gravity wave activity in the lower atmosphere: Seasonal and latitudinal variations[J].Journal of Geophysical Research, 100(D1): 1327-1350.
[2]Chen D, Chen Z Y, Lü D R, 2013.Spatiotemporal spectrum and momentum flux of the stratospheric gravity waves generated by a typhoon[J].Science China: Earth Sciences, 56(1): 54-62.DOI: 10.1007/s11430-012-4502-4.
[3]Chen L, Bian J, Liu Y, al et, 2019.Statistical analysis of inertial gravity wave parameters in the lower stratosphere over northern China [J].Climate Dynamics, 52(1): 563-575.
[4]Eckermann S D, 1996.Hodographic analysis of gravity waves: relationships among stokes parameters, rotary spectra and cross-spectral methods[J].Journal of Geophysical Research, 101(D14): 19169-19174.
[5]Eckermann S D, Preusse P, 1999.Global measurements of stratospheric mountain waves from space[J].Science, 286(5444): 1534-1537.
[6]Fritts D C, Alexander M J, 2003.Gravity wave dynamics and effects in the middle atmosphere[J].Reviews of Geophysics, 41(1): 1003.DOI: 10.1029/2001RG000106.
[7]Hamilton K, 1991.Climatological statistics of stratospheric inertia-gravity waves deduced from historical rocketsonde wind and temperature data[J].Journal of Geophysical Research, 96(D11): 20831-20839.
[8]Hines C O, 1989.Tropopausal mountain waves over arecibo: A case study[J].Journal of the Atmospheric Sciences, 46(4): 476-488.
[9]Hoffmann P, Serafimovich A, Peters D, al et, 2006.Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign-part I: Observations with collocated radars[J].Annales Geophysicae, 24(11): 2851-2862.
[10]Holton J R, 1983.The influence of gravity wave breaking on the general circulation of the middle atmosphere[J].Journal of the Atmospheric Sciences, 40(10): 2497-2507.
[11]Jackson D R, Gadian A, Hindley N P, al et, 2018.A means for improved analysis of gravity waves and low-level wind impacts generated from mountainous islands[J].Bulletin of American Meteorological Society, 99(5): 1027-1040.DOI: 10.1175/BAMS-D-16-0151.1.
[12]Kafando P, Chane-Ming F, Petitdidier M, 2016.Stratospheric variability of wave activity and parameters in equatorial coastal and tropical sites during the west african monsoon[J].Climate Dynamics, 47(11): 3433-3456.DOI: 10.1007/s00382-015-2764-1.
[13]Kitamura Y, Hirota I, 1989.Small-scale disturbances in the lower stratosphere revealed by daily rawinsonde observation[J].Journal of the Meteorological Society of Japan, 67(5): 817-831.
[14]Kramer R, Wüst S, Schmidt C, al et, 2015.Gravity wave characteristics in the middle atmosphere during the CESAR campaign at palma de mallorca in 2011/2012: Impact of extratropical cyclones and cold fronts[J].Journal of Atmospheric and Solar-Terrestrial Physics, 128: 8-23.
[15]Moffat-Griffin T, Hibbins R E, Jarvis M J, al et, 2011.Seasonal variations of gravity wave activity in the lower stratosphere over an antarctic peninsula station[J].Journal of Geophysical Research: Atmospheres, 116(D14): D14111.DOI: 10.1029/2010JD015349.
[16]Murphy D J, Alexander S P, Klekociuk A R, al et, 2014.Radiosonde observations of gravity waves in the lower stratosphere over davis, antarctica[J].Journal of Geophysical Research: Atmospheres, 119(21): 11973-11996.DOI: 10.1002/2014JD022448.
[17]Plougonven R W, Zhang F Q, 2014.Internal gravity waves from atmospheric jets and fronts[J], Reviews of Geophysics, 52(1): 33-76.DOI: 10.1002/2012RG000419.
[18]Qing H Y, Zhou C, Zhao Z Y, al et, 2014.A statistical study of inertia gravity waves in the troposphere based on the measurements of wuhan atmosphere radio exploration (WARE) radar[J].Journal of Geophysical Research: Atmospheres, 119(7): 3701-3714.DOI: 10.1002/2013JD020684.
[19]Qing H Y, Zhou C, Zhao Z Y, al et, 2016.Inertia gravity wave activity in the troposphere and lower stratosphere observed by wuhan MST radar[J].Science China Earth Sciences, 059(5): 1066-1073.DOI: 10.1007/s11430-015-5253-9.
[20]Thomas L, Worthington R M, McDonald A J, 1998.Inertia-gravity waves in the troposphere and lower stratosphere associated with a jet stream exit region[J].Annales Geophysicae, 17(1): 115-121.
[21]Sawyer J S, 1961.Quasi-periodic wind variations with height in the lower stratosphere[J].Quarterly Journal of the Royal Meteorological Society, 87(371): 24-33.
[22]VanZandt T E, 1982.A universal spectrum of buoyancy waves in the atmosphere[J].Geophysical Research Letters, 9(5): 575-578.
[23]Wang L, Geller M A, 2003.Morphology of gravity wave energy as observed from 4 years (1998-2001) of high vertical resolution U.S.radiosonde data [J].Journal of Geophysical Research, 108(D16): 4489.DOI: 10.1029/2002JD002786.
[24]Wang L, Geller M A, Alexander M J, 2005.Spatial and temporal variations of gravity wave parameters.Part I: Intrinsic frequency, wavelength, and vertical propagation direction [J].Journal of the Atmospheric Sciences, 62(1): 125-142.
[25]Yamamori M, Sato K, 2006.Characteristics of inertia gravity waves over the south pacific as revealed by radiosonde observations[J].Journal of Geophysical Research, 111(D16): D16110.
[26]Zhang S D, Yi F, 2005.A statistical study of gravity waves from radiosonde observations at Wuhan (30°N, 114°E) China[J].Annales Geophysicae, 23(3): 665-673.
[27]Zhang S D, Yi F, 2007.Latitudinal and seasonal variations of inertial gravity wave activity in the lower atmosphere over central China[J].Journal of Geophysical Research, 112(D5): D05109.
[28]Zhang S D, Yi F, Huang C M, al et, 2010.Latitudinal and seasonal variations of lower atmospheric inertial gravity wave energy revealed by US radiosonde data[J].Annales Geophysicae, 28: 1065-1074.
[29]白志宣, 卞建春, 陈洪滨, 等, 2016.中国地区下平流层惯性重力波参数分布特征的资料分析[J].中国科学: 地球科学, 46(12): 1645-1657.
[30]卞建春, 陈洪滨, 吕达仁, 2004.用垂直高分辨率探空资料分析北京上空下平流层重力波的统计特性[J].中国科学D辑: 地球科学, 34(8): 748-756.
[31]陈丹, 陈泽宇, 吕达仁, 2011.台风“麦莎”(Matsa)诱发平流层重力波的数值模拟[J].中国科学: 地球科学, 41(12): 1786-1794.
[32]陈丹, 陈泽宇, 吕达仁, 2014.与东北冷涡相伴的高空急流诱发平流层重力波的数值模拟研究[J].地球物理学报, 57(1): 10-20.DOI: 10.6038/cjg20140102.
[33]程胡华, 2016.晋西北地区一次雷阵雨天气过程中重力波参数演变特征[J].干旱气象, 34(5): 811-819.
[34]邓少格, 钟中, 程胡华, 2012.一次暴雨过程中重力波参数演变特征的模拟结果[J].地球物理学报, 55(6): 1831-1843.DOI: 10.6038/j.issn.0001-5733.2012.06.004.
[35]覃卫坚, 寿绍文, 高守亭, 等, 2010.一次冰雹过程的惯性重力波观测及数值模拟[J].地球物理学报, 53(5): 1039-1049.
[36]洪军, 姚志刚, 韩志刚, 等, 2015.台风“梅花”诱发平流层重力波的数值模拟与AIRS观测[J].地球物理学报, 58(7): 2283-2293.DOI: 10.6038/cjg20150707.
[37]孙继松, 王华, 2009.重力波对一次雹暴天气过程演变的影响[J].高原气象, 28(1): 165-172.
[38]吴迪, 王澄海, 何光碧, 2016.青藏高原地区夏季两次强降水过程中重力波特征分析[J].高原气象, 35(4): 854-864.DOI: 10.7522/j.issn.1000-0534.2015.00066.
[39]徐炎炎, 闫敬华, 王谦谦, 等, 2013.华南暖区暴雨的一种低层重力波触发机制[J].高原气象, 32(4): 1050-1061.DOI: 10.7522/j.issn.1000-0534.2012.00100.
[40]赵桂香, 王晓丽, 王一颉, 2017.黄河中游地区初春与盛夏MCC结构特征比较分析[J].高原气象, 36(6): 1638-1654.DOI: 10.7522/j.issn.1000-0534.2016.00138.
[41]钟水新, 陈子通, 2015.天气与气候模式中次网格重力波拖曳参数化的研究[J].高原气象, 34(4): 1177-1185.DOI: 10.7522/j.issn.1000-0534.2014.00045.
Outlines

/