The Response of Stomatal Conductance of Three Typical Shrubs to Environmental Change and Stomatal Regulation of Transpiration in an Arid Desert-oasis Ecotone

  • Fei GUO ,
  • Xibin JI ,
  • Bowen JIN ,
  • Liwen ZHAO ,
  • Wenyue ZHAO ,
  • D
Expand
  • <sup>1.</sup>Linze Inland River Basin Research Station,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Key Laboratory of Ecohydrology and Watershed Science Chinese Academy of Sciences,Lanzhou 730000,Gansu,China;<sup>2.</sup>University of Chinese Academy of Sciences,Beijing 100049,China;<sup>3.</sup>State Key Laboratory of Earth Surface Processes and Resource Ecology,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China

Received date: 2021-01-04

  Online published: 2021-06-28

Abstract

LI-6400XT Portable Photosynthesis System and Model 1505 Pressure Chamber were used to measure the water vapor exchange process and leaf water potential (Ψ) changes of three dominant shrub species (i.e., C4 plant Haloxylon ammodendronCalligonum mongolicum and C3 plant Nitraria sphaerocarpa) growing in a desert-oasis ecotone of the central Hexi Corridor.The changes of water transfer factors prior to and following rainfall events during the growing season were compared, the responses of stomatal conductance to main environmental factors and leaf water potential were quantified respectively.The regulation mechanism of stomatal conductance on transpiration of desert shrubs was also analyzed.The results showed that the main factors affecting stomatal conductance of three shrubs were vapor pressure deficit (VPD), air temperature (T) and Ψ in turn: stomatal conductance decreased with the increasing VPD and T and decreased with the decrease in Ψ.The integrated responses of stomatal conductance of these three desert plants to environmental factors and leaf water potential showed that C3 plant Nitraria sphaerocarpa was more sensitive to these factors than C4 plant Haloxylon ammodendron and Calligonum mongolicum.By analogy to Ohm’s law, the product of stomatal conductance and VPD can be used to properly simulate the transpiration rate with a linear relationship.

Cite this article

Fei GUO , Xibin JI , Bowen JIN , Liwen ZHAO , Wenyue ZHAO , D . The Response of Stomatal Conductance of Three Typical Shrubs to Environmental Change and Stomatal Regulation of Transpiration in an Arid Desert-oasis Ecotone[J]. Plateau Meteorology, 2021 , 40(3) : 632 -643 . DOI: 10.7522/j.issn.1000-0534.2021.00011

References

[1]Anderegg W R L, Wolf A, Arango-Velez A, al et, 2017.Plant water potential improves prediction of empirical stomatal models [J].PLoS ONE, 12(10): 1-17.DOI: 10.5061/dryad.9fp38.
[2]Berry J A, Beerling D J, Franks P J, 2010.Stomata: Key players in the earth system, past and present [J].Current Opinion in Plant Biology, 13(3): 233-240.DOI: 10.1016/j.pbi.2010.04.013.
[3]Buckley T N, Farquhar G D, Mott K A, 1999.Carbon-water balance and patchy stomatal conductance [J].Oecologia, 118(2): 132-143.DOI: org/10.1007/s004420050711.
[4]Canadell J, Jackson R B, Ehleringer J B, al et, 1996.Maximum rooting depth of vegetation types at the global scale [J].Oecologia, 108(4): 583-595.DOI: org/10.1007/BF00329030.
[5]Chaves M M, Pereira J S, Maroco J, al et, 2002.How plants cope with water stress in the field?Photosynthesis and growth [J].Annals of Botany, 89: 907-916.DOI: 10.1093/aob/mcf105.
[6]Dewar R C, 1995.Interpretation of an empirical model for stomatal conductance in terms of guard cell function [J].Plant, Cell & Environment, 18(4): 365-372.DOI: org/10.1111/j.1365-3040. 1995.tb00372.x.
[7]Gu D X, Wang Q, Mallik A, 2018.Non-convergent transpiration and stomatal conductance response of a dominant desert species in central Asia to climate drivers at leaf, branch and whole plant scales [J].Journal of Agricultural Meteorology, 74(1): 9-17.DOI: 10.2480/agrmet.D -17-00007.
[8]Hoshika Y, Osada Y, Marco A, al et, 2017.Global diurnal and nocturnal parameters of stomatal conductance in woody plants and major crops [J].Global Ecology and Biogeography, 27(2): 257-275.DOI: org/10.1111/geb.12681.
[9]Jarvis P G, 1976.The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field [J].Philosophical Transactions of the Royal Society of London, 273(927): 593-610.DOI: org/10.1098/rstb.1976.0035.
[10]Ji X B, Zhao W Z, Kang E S, al et, 2016.Transpiration from three dominant shrub species in a desert-oasis ecotone of arid regions of northwestern China [J].Hydrological Processes, 30(25): 4841-4854.DOI: org/10.1002/hyp.10937.
[11]Jones H G, 1998.Stomatal control of photosynthesis and transpiration [J].Journal of Experimental Botany, 49: 387-398.DOI: 10. 1093/jexbot/49.suppl_1.387.
[12]Kelliher F M, Leuning R, Raupach M R, al et, 1995.Maximum conductances for evaporation from global vegetation types[J].Agricultural & Forest Meteorology, 73(1/2): 1-16.DOI: 10.1016/0168-1923(94)02178-M.
[13]Klein T, 2014.The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviors [J].Functional Ecology, 28(6): 1313-1320.DOI: 10.1111/1365-2435.12289.
[14]Ludlow M M, 1976.Ecophysiology of C<sub>4</sub> Grasses [J].Water and Plant Life, 19: 364-386.DOI: 10.1007/978-3-642-66429-8_22.
[15]Meinzer F C, Woodruff D R, Marias D E, al et, 2016.Mapping 'hydroscapes' along the iso-to anisohydric continuum of stomatal regulation of plant water status [J].Ecology Letters, 19: 1343-1352.DOI: 10.1111/ele.12670.
[16]Monteith J L, 1995.A reinterpretation of stomatal responses to humidity [J].Plant Cell & Environment, 18(4): 357-364.DOI: 10. 1111/j.1365-3040.1995.tb00371.x.
[17]Oren R, Sperry J S, Katul G G, al et, 2010.Survey and synthesis of intra-and interspecific variation in stomatal sensitivity to vapour pressure deficit [J].Plant Cell & Environment, 22(12): 1515-1526.DOI: 10.1046/j.1365-3040.1999.00513.x.
[18]Schimel D S, 2010.Drylands in the earth system [J].Science, 327: 418-419.DOI: 10.1126/science.1184946.
[19]Schulze E D, 1986.Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil [J].Annual Review of Plant Biology, 37(37): 247-274.DOI: 10.1146/annurev.pp.37.060186.001335.
[20]Sperry J S, Venturas M D, Anderegg W R L, al et, 2017.Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost [J].Plant, Cell & Environment, 40(6): 816-830.DOI: 10.1111/pce.12852.
[21]Whitehead D, Okali D U U, Fasehun F E, 1981.Stomatal response to environmental variables in two tropical forest species during the dry season in Nigeria [J].Journal of Applied Ecology, 18(2): 571-587.DOI: 10.2307/2402418.
[22]Xu S Q, Ji X B, Jin B W, al et, 2017.Root distribution of three dominant desert shrubs and their water uptake dynamics [J].Journal of Plant Ecology, 10(05): 780-790.DOI: 10.1093/jpe/rtw079.
[23]Yu M H, Ding G D, Gao G L, al et, 2018.Leaf temperature fluctuations of typical psammophytic plants and their application to stomatal conductance estimation [J].Forests, 9(6): 313-326.DOI: 10.3390/f9060313.
[24]Zeppel M J B, Murray B R, Barton C, al et, 2004.Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia [J].Functional Plant Biology, 31(5): 461-470.DOI: 10.1071/FP03220.
[25]Zheng C L, Wang Q, 2014.Water-use response to climate factors at whole tree and branch scale for a dominant desert species in central Asia: <i>Haloxylon ammodendron</i> [J].Ecohydrology, 7(1): 56-63.DOI: 10.1002/eco.1321.
[26]褚建民, 2007.干旱区植物的水分选择性利用研究 [D].北京: 中国林业科学研究院, 1-105.
[27]高冠龙, 冯起, 张小由, 等, 2017.蒸散发模型结合微气象数据模拟陆面蒸散发研究进展[J].高原气象, 36(6): 1630-1637.DOI: 10.7522/j.issn.1000-0534.2016.00115.
[28]龚吉蕊, 赵爱芬, 苏培玺, 等, 2005.黑河流域几个主要植物种光合特征的比较研究[J].中国沙漠, 25(4): 587-592.DOI: 10. 3321/j.issn: 1000-694X.2005.04.023.
[29]李元寿, 贾晓红, 齐艳军, 等, 2019.多年冻土区土壤蒸散发对气候变化的敏感性分析[J].高原气象, 38(6): 1293-1299.DOI: 10.7522/j.issn.1000-0534.2019.00077.
[30]罗丹丹, 王传宽, 金鹰, 2019.植物应对干旱胁迫的气孔调节[J].应用生态学报, 30(12): 4333-4343.
[31]罗欢, 司建华, 赵春彦, 等, 2020.荒漠河岸林胡杨光合参数变化特征及影响因子研究[J]. 高原气象, 39(2): 393-401.DOI: 10.7522/j.issn.1000-0534.2019.00037.
[32]苏培玺, 2019.C<sub>4</sub>植物生物学—荒漠植物生理生态适应性[M].北京: 科学出版社, 99-106.
[33]苏培玺, 严巧娣, 2006.C4荒漠植物梭梭和沙拐枣在不同水分条件下的光合作用特征[J].生态学报, 26(1): 75-82.DOI: 10. 3321/j.issn: 1000-0933.2006.01.011.
[34]苏培玺, 赵爱芬, 张立新, 等, 2003.荒漠植物梭梭和沙拐枣光合作用、 蒸腾作用及水分利用效率特征[J].西北植物学报, 23(1): 11-17.
[35]王亚婷, 唐立松, 2009.古尔班通古特沙漠不同生活型植物对小雨量降雨的响应[J].生态学杂志, 28(6): 1028-1034.
[36]王宇轩, 奥银焕, 李照国, 等, 2021.黑河中下游不同类型下垫面的能量收支差异及其成因研究[J/OL].高原气象.[2021-02-01]..
[37]徐贵青, 李彦, 2009.共生条件下三种荒漠灌木的根系分布特征及其对降水的响应[J].生态学报, 29 (1): 130-137.DOI: 10. 3321/j.issn: 1000-0933.2009.01.016.
[38]许皓, 李彦, 2005.3种荒漠灌木的用水策略及相关的叶片生理表现[J].西北植物学报, 25 (7): 1309-1316.DOI: 10.3321/j.issn: 1000-4025.2005.07.005.
[39]闫珂, 杨广, 何新林, 等, 2020.准噶尔盆地南缘梭梭水分来源与传输规律分析[J].干旱区资源与环境, 34(5): 201-208.
[40]于贵瑞, 王秋凤, 王建林, 等, 2010.植物光合、 蒸腾与水分利用的生理生态学[M].北京: 科学出版社, 113-119.
[41]袁国富, 张佩, 罗毅, 2012.中国温带荒漠植物蒸腾过程模拟的若干问题分析[J].中国沙漠, 32(1): 47-53.
[42]曾晓玲, 刘彤, 张卫宾, 等, 2012.古尔班通古特沙漠西部地下水位和水质变化对植被的影响[J].生态学报, 32(5): 1490-1501.DOI: 10.5846/stxb201101250125.
[43]郑海雷, 黄子琛, 1992.春小麦单叶气孔行为及蒸腾作用的模拟[J].高原气象, 11(4): 423-430.
[44]周海, 赵文智, 何志斌, 2017.两种荒漠生境条件下泡泡刺水分来源及其对降水的响应[J].应用生态学报, 28(7): 2083-2092.DOI: 10.13287/j.1001-9332.201707.021.
Outlines

/