Study of Sensitivity Simulation of Planetary Boundary Layer Parameterization Schemes in Beijing

  • Tian LIANG ,
  • Liang CHEN ,
  • Jianjun HE ,
  • Lei ZHANG ,
  • Shanling GONG ,
  • Huizheng CHE
Expand
  • <sup>1.</sup>Key Laboratory of Geographic Information Science (Ministry of Education),East China Normal University,Shanghai 200241,China;<sup>2.</sup>School of Geographic Sciences,East China Normal University,Shanghai 200241,China;<sup>3.</sup>State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of China Meteorological Administration,Chinese Academy of Meteorological Sciences,Beijing 100081,China;<sup>4.</sup>Key Laboratory of Meteorological Disaster,Ministry of Education/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China

Received date: 2020-07-30

  Online published: 2021-06-28

Abstract

In order to study the characteristic of planetary boundary layer structure and near surface meteorological elements in Beijing, the Weather Research and Forecasting Model (WRF) is used to simulate the boundary layer meteorological field in Beijing during clear days.The simulation differences of the four sets of planetary boundary layer parameterization schemes (YSU, ACM2, MYJ, BL) on radiation, surface energy budget, meteorological elements and planetary boundary layer structure are studied through sensitivity tests.Then, the measured data of observation stations, including 2 m-temperature, 2 m-specific humidity and 10 m-windspeed, the sounding data and the observed data of 325 m meteorological tower are used to compare with the simulated data.The study is divided into four parts.The first part is the introduction.The second part mainly introduces the research area, data and methods.The third part analyzes the research results comparing the WRF model simulation results with the actual observation data and evaluates the simulation results.Then the fourth part is about the result and discussion.The results indicate that: All schemes can accurately simulate the downward shortwave radiation, and the abilities to simulate the longwave radiation are similar.MYJ scheme has the best simulation effect for 2 m-temperature, YSU scheme performs the best in 2 m-specific humidity and 10 m-wind speed, in general, YSU scheme is superior in simulating surface meteorological elements.However, all the experiments simulation results of 2 m-temperature at night are higher than the observed temperature, which may be caused by the model's insufficient consideration of the urban surface and the particularity of the urban boundary layer.And the further research will be focused on this aspect.In addition, the temperature profiles which simulated by four PBL schemes are colder than the observation, the specific humidity profiles are higher and the wind speed profiles are lower.In order to analyze the vertical structure of the planetary boundary layer more precisely, the observation data of the 325 m meteorological tower is used as supplement.The result shows that the four experiments could accurately reflect the temperature vertical profile and the relative humidity result simulated by YSU scheme above 15 m is the closest to the observed value in the daytime.YSU scheme has the highest planetary boundary layer height (PBLH), and the non-local schemes show higher PBLH than the local schemes, moreover, the result of the PBLH simulated by MYJ scheme is not satisfactory.This study further deepens the understanding of planetary boundary layer in Beijing, which provides theoretical basis for further study of urban canopy layer and urban environment.

Cite this article

Tian LIANG , Liang CHEN , Jianjun HE , Lei ZHANG , Shanling GONG , Huizheng CHE . Study of Sensitivity Simulation of Planetary Boundary Layer Parameterization Schemes in Beijing[J]. Plateau Meteorology, 2021 , 40(3) : 656 -670 . DOI: 10.7522/j.issn.1000-0534.2020.0095

References

[1]Bougeault P, Lacarrere P, 1989.Parameterization of orography-induced turbulence in a mesobeta——scale model[J].Monthly Weather Review, 117 (8): 1872-1890.DOI: 10.1175/1520-0493(1989)1172.0.CO; 2.
[2]Chen F, Dudhia J, 2001.Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 modeling system.Part I: Model implementation and sensitivity[J].Monthly Weather Review, 129 (4): 569-585.DOI: 10.1175/1520-0493(2001)1292.0.CO; 2.
[3]Chu Y Q, Li J, Li C C, al et, 2019.Seasonal and diurnal variability of planetary boundary layer height in Beijing: Intercomparison between MPL and WRF results[J].Atmospheric Research, 227 (OCT): 1-13.DOI: 10.1016/j.atmosres.2019.04.017.
[4]Hong S Y, Noh Y, Dudhia J, 2006a.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Monthly Weather Review, 134 (9): 2318-2341.DOI: 10.1175/MWR3199.1.
[5]Hong S Y, Lim J O J, 2006b.The WRF Single-Moment 6-Class Microphysics Scheme (WSM6)[J].Asia Pacific Journal of Atmospheric Sciences, 42 (2): 129-151.
[6]Hu X M, Nielsen G J W, Zhang F Q, 2010.Evaluation of three planetary boundary layer schemes in the WRF model[J].Journal of Applied Meteorology and Climatology, 49 (9): 1831-1844.DOI: 10.1175/2010JAMC2432.1.
[7]Janji? Z I, 1994.The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes[J].Monthly Weather Review, 122 (5): 927-945.DOI: 10.1175/1520-0493(1994)122<0927: TSMECM>2.0.CO; 2.
[8]Jiménez P A, Dudhia J, González-Rouco J F, al et, 2012.A revised scheme for the WRF surface layer formulation[J].Monthly Weather Review, 140 (3): 898-918.DOI: 10.1175/MWR-D-11-00056.1.
[9]Jimy D, 1989.Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J].Journal of the Atmospheric Sciences, 46 (20): 3077-3107.DOI: 10.1175/1520-0469(1989)046<3077: NSOCOD>2.0.CO; 2.
[10]Kain J S, 2004.The kain-fritsch convective parameterization: An update[J].Journal of Applied Meteorology, 43 (1): 170-181.
[11]Milovac J, Warrach-Sagi K, Behrendt A, al et, 2016.Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements[J].Journal of Geophysical Research: Atmospheres, 121 (2): 624-649.DOI: 10.1002/2015JD023927.
[12]Mlawer E J, Taubman S J, Brown P D, al et, 1997.Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave[J].Journal of Geophysical Research: Atmospheres, 102 (D14): 16663-16682.DOI: 10.1029/97JD00237.
[13]Pleim J E, 2007.A combined local and nonlocal closure model for the atmospheric boundary layer.Part I: Model description and testing[J].Journal of Applied Meteorology and Climatology, 46 (9): 1383-1395.DOI: 10.1175/JAM2539.1.
[14]Shin H H, Hong S, 2011.Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99[J].Boundary-Layer Meteorology, 139 (2): 261-281.DOI: 10.1007/s10546-010-9583-z.
[15]Tyagi B, Magliulo V, Finardi S, al et, 2018.Performance analysis of planetary boundary layer parameterization schemes in WRF modeling set up over southern Italy[J].Atmosphere, 9 (7): 272.DOI: 10.3390/atmos9070272.
[16]Xie B, Fung J C H, Chan A, al et, 2012.Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model[J].Journal of Geophysical Research: Atmospheres, 117 (D12).DOI: 10.1029/2011JD017080.
[17]Xu L J, Liu H Z, Du Q, al et, 2019.The assessment of the planetary boundary layer schemes in WRF over the central Tibetan Plateau[J].Atmospheric Research, 230: 104644.DOI: 10.1016/j.atmosres.2019.104644.
[18]蔡子颖, 韩素芹, 邱晓滨, 等, 2019.基于WRF/Chem模式天津地区重污染天气成因分析[J].高原气象, 38 (5): 1108-1119.DOI: 10.7522/j.issn.1000-0534.2018.00123.
[19]陈炯, 王建捷, 2006.北京地区夏季边界层结构日变化的高分辨模拟对比[J].应用气象学报, 17 (4): 402-411.
[20]陈燕, 蒋维楣, 2006.城市建筑物对边界层结构影响的数值试验研究[J].高原气象, 25 (5): 824-833.
[21]何晓凤, 蒋维楣, 陈燕, 等, 2007.人为热源对城市边界层结构影响的数值模拟研究[J].地球物理学报, 50 (1): 74-82.DOI: 10.3321/j.issn: 0001-5733.2007.01.010.
[22]黄文彦, 沈新勇, 王卫国, 等, 2014.边界层参数化方案对边界层热力和动力结构特征影响的比较[J].地球物理学报, 57 (5): 1399-1414.
[23]蒋维楣, 陈燕, 2007.人为热对城市边界层结构影响研究[J].大气科学, 31 (1): 37-47.
[24]李斐, 邹捍, 周立波, 等, 2017.WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J].高原气象, 36 (2): 340-357.DOI: 10.7522/j.issn.1000-0534.2016.00084.
[25]李晓莉, 毕宝贵, 李泽椿, 2005.北京冬季城市边界层结构形成机制的初步数值研究[J].气象学报, 63(6): 889-902.
[26]秦庆昌, 张琳娜, 于佳, 等, 2019.北京地区两次雨雪转换过程的相态模拟研究[J].高原气象, 38 (5): 1027-1037.DOI: 10.7522/j.issn.1000-0534.2018.00124.
[27]邱贵强, 李华, 张宇, 等, 2013.高寒草原地区边界层参数化方案的适用性评估[J].高原气象, 32 (1): 46-55.DOI: 10.7522/j.issn.1000-0534.2012.00006.
[28]沈新勇, 陈逸智, 郭春燕, 等, 2019.京津冀地区一次雾霾过程的污染分布及来源分析[J].高原气象, 38 (6): 1332-1343.DOI: 10.7522/j.issn.1000-0534.2018.00157.
[29]佟华, 陈仲良, 桑建国, 2004.城市边界层数值模式研究以及在香港地区复杂地形下的应用[J].大气科学, 28 (6): 957-978.DOI: 10.3878/j.issn.1006-9895.2004.06.14.
[30]王成刚, 沈滢洁, 罗峰, 等, 2017.晴天及阴天条件下WRF模式中几种边界层参数化方案的对比分析研究[J].地球物理学报, 60 (3): 924-934.
[31]王颖, 张镭, 胡菊, 等, 2010.WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J].高原气象, 29 (6): 1397-1407.
[32]尹承美, 何建军, 于丽娟, 等, 2019.多尺度气象条件对济南PM2.5污染的影响[J].高原气象, 38 (5): 1120-1128.DOI: 10.7522/j.issn.1000-0534.2019.00018.
[33]周林帆, 张述文, 李少英, 等, 2019.城市下垫面对西安地区一次强降水的影响[J].高原气象, 38 (4): 773-780.DOI: 10.7522/j.issn.1000-0534.2018.00117.
Outlines

/