Based on the monitoring data of black carbon (BC) concentration by EA-12 type and the meteorological observation data in Xingtai city from January to December 2019, analyzed the characteristics, sources and relationship between BC pollution and meteorological factors, The results showed that: The daily average concentration of BC was 0.85 μg·m-3 in Xingtai, the concentration frequency of 79.80% in the whole year was concentrated in the range of 0.30~1.20 μg·m-3; but in January, the concentration frequency of 90.62% was concentrated in the range of 1.05~5.05 μg·m-3, the serious BC pollution in January has contributed significantly to the deterioration of air quality throughout the year.When the wind speed was more than 8 m·s-1, there was a transportation in the north direction, and when the wind speed was less than 8 m·s-1, there was a transportation in the direction of west and south; Precipitation and precipitation duration were equally important to the wet removal of BC, The BC pollution in Xingtai city was mainly affected by local and local sources of coal-fired and motor vehicle emissions, when the atmospheric inverse temperature was less than 200 m, the concentration of BC will increase obviously due to the decrease of diffusion capacity and the accumulation effect.
Jufei HAO
,
Yunling YANG
,
Erjie LI
,
Zhijie WU
. Analysis on the Relationship between Black Carbon Concentration and Meteorological Factors in Xingtai City[J]. Plateau Meteorology, 2021
, 40(3)
: 671
-679
.
DOI: 10.7522/j.issn.1000-0534.2020.00049
[1]Barrie L A, 1986.Arctic air pollution: An overview of current knowledge[J].Atmospheric Environment, 20(4): 643-663.
[2]Galdos M, Cavalett O, Seabra J E A, al et, 2013.Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions[J].Applied Energy, 104: 576-582.
[3]Hansen A D A, Novakov T, 1988.Aerosol black carbon measurements over the western Atlantic Ocean[J].Global Biogeochemical Cycles, 2(1): 41-45.
[4]Hitzenberger R, Tohno S, 2001.Comparison of black carbon (BC) aerosols in two urban areas-concentrations and size distributions[J].Atmospheric Environment, 35(12): 2153-2167.
[5]He X, Li C C, Lau A K H, al et, 2009.An intensive study of aerosol optical properties in Beijing urban area [J].Atmospheric Chemistry and Physics, 9(22): 8903-8915.
[6]Jacobson M Z, 2001.Strong radiative heating due to mixing state of black carbon in atmospheric aerosol[J].Nature, 409(6821): 695-697.
[7]Mousavi A, SowlatM H, Lovett C, al et, 2019.Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy[J].Atmospheric Environment, 203: 252-261.
[8]Petzold A, Schonlinner M, 2004.Multi-angle absorption photometry-a new method for the measurement of aerosol light absorption and atmospheric black carbon[J].Journal of Aerosol Science, 35(4): 421-441.
[9]Peters J, Theunis J, Poppel M V, al et, 2013.Monitoring PM<sub>10</sub> and ultrafine particles in urban environments using mobile measurements[J].Aerosol and Air Quality Research, 13(2): 509-522.
[10]Rosen H, Hansen A D A, Gundel L A, al et, 1978.Identification of the optically absorbing component in urban aerosols[J].Applied Optics, 17(24): 3859-3861.
[11]Wang G C, Bai J H, Kong Q X, al et, 2005.Black carbon particles in the urban atmosphere in Beijing [J].Advances in Atmospheric Sciences, 22(5): 640-646.
[12]Wang Y G, Hopke P K, Rattigan O V, al et, 2011.Characterization of ambient black carbon and wood burning particles in two urban areas[J].Journal of Environmental Monitoring, 13(7): 1919-1926.
[13]Zhang Y H, Su H, Zhong L J, al et, 2008.Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD2004 campaign[J].Atmospheric Environment, 42(25): 6203-6218.
[14]陈晓秋, 徐亚, 蒋冬升, 等, 2013.2011年夏冬两季福州城区黑碳气溶胶污染特征研究[J].中国环境监测, 29(6): 39-43.
[15]楚希, 2015.湘潭市地区大气氮氧化物污染研究[D].湘潭: 湘潭大学, 2-32.
[16]郝巨飞, 袁雷武, 李芷霞, 等, 2018.激光雷达和微波辐射计对邢台市一次沙尘天气的探测分析[J].高原气象, 37(4): 1110-1119.DOI: 10.7522/j.issn.1000-0534.2018.00009.
[17]尹承美, 何建军, 于丽娟, 等, 2019.多尺度气象条件对济南PM<sub>2.5</sub>污染的影响[J].高原气象, 38(5): 1120-1128.DOI: 10.7522/j.issn.1000-0534.2019.00018.
[18]黄成, 陈长虹, 李莉, 等, 2011.长江三角洲地区人为源大气污染物排放特征研究[J].环境科学学报, 31(9): 44-57.
[19]胡明玉, 秦凯, 白杨, 等, 2015.2013年12月石家庄一次霾天气过程中的黑碳浓度特征[J].中国环境科学, 35(9): 2585-2593.
[20]李宾, 2010.几种常见大气污染物的来源及危害[J].内蒙古科技与经济, 14(10): 55-56.
[21]刘立忠, 王宇翔, 么远, 等, 2016.西安市黑碳气溶胶浓度特征及与气象因素和常规污染物相关性[J].中国环境监测, 32(5): 45-50.
[22]罗运阔, 陈尊裕, 张轶男, 等, 2010.中国南部四背景地区春季大气碳质气溶胶特征与来源[J].中国环境科学, 30(11): 1543-1549.
[23]秦世广, 汤洁, 温玉璞, 2001.黑碳气溶胶及其在气候变化研究中的意义[J].气象, 27(11): 3-7.
[24]中国气象局, 2007.大气黑碳气溶胶观测要素-光学衰减方法[S].北京: 气象出版社.
[25]唐仁茂, 李德俊, 柳草, 等, 2017.一次重雾霾天气成因及湿清除特征分析 [J].气候与环境研究, 22 (6): 699-707.
[26]唐孝炎, 张远航, 邵敏, 2006.大气环境化学[M].北京: 高等教育出版社, 40-48.
[27]王扬锋, 马雁军, 陆忠艳, 等, 2011.沈阳黑碳气溶胶浓度的观测研究分析[J].安全与环境学报, 11(3): 126-129.
[28]魏桢, 朱余, 张劲松, 等, 2015.合肥市黑碳气溶胶浓度分布和变化特征研究[J].中国环境监测, 31(6): 22-27.
[29]张美根, 徐永福, 张仁健, 等, 2005.东亚地区春季黑碳气溶胶源排放及其浓度分布[J].地球物理学报, 48(1): 46-51.
[30]肖娜, 张健恺, 田文寿, 等, 2020.东亚地区氮氧化物排放对北半球UTLS区域臭氧和温度的影响[J].高原气象, 39(2): 402-415.DOI: 10.7522/j.issn.1000-0534.2019.00043.
[31]许黎, 王亚强, 罗勇, 等, 2007.黑碳气溶胶的气候效应和拓展的研究领域[J].气候变化研究进展, 3(6): 328-333.
[32]许黎, 王亚强, 陈振林, 等, 2006.黑碳气溶胶研究进展Ⅰ: 排放、 清除和浓度[J].地球科学进展, 21(4): 352-360.
[33]邢台市生态环境局, 2019.2018年邢台市生态环境状况公报[EB/OL].[2020-03-02]..
[34]杨茜, 高阳华, 陈贵川, 2019.降水对重庆市大气污染物浓度的影响分析[J].气象与环境科学, 42(2): 68-73.
[35]杨卫芬, 程钟, 沈琰, 2013.常州城区秋冬季黑碳气溶胶的浓度变化特征[J].环境监测管理与技术, 25(5): 15-18.
[36]张芝娟, 陈斌, 贾瑞, 等, 2019.全球不同类型气溶胶光学厚度的时空分布特征[J].高原气象, 38(3): 660-672.DOI: 10.7522/j.issn.1000-0534.2019.00002.
[37]赵玉成, 德力格尔, 蔡永祥, 等, 2008.西宁地区大气中黑碳气溶胶浓度的观测研究[J].冰川冻土, 30(5): 789-794.
[38]赵敬德, 亢燕铭, 2007.黑碳气溶胶浓度测量的研究进展[J].能源与环境, 26(3): 92-94.
[39]朱羽蒙, 邓利群, 钱骏, 等, 2016.2014年秋季成都市PM<sub>2.5</sub>中黑碳含量变化特征研究[C]// 海南海口: 中国环境科学学会2016年学术年会.