The researches on the precipitation prediction in the southern Qinghai-Xizang Plateau during the flood period are few and difficult.To solve this problem, the correlation between the year-to-year increments of precipitation and those of 88 atmospheric circulation indices, 26 oceanic indices and 16 other indices released by the National Climate Center from 1981 to 2010 were analyzed.The optimal combination of predictors was selected for the precipitation prediction by using the stepwise regression method.Based on these predictors, a physically-based statistical forecast model was established.Independent sample return tests from 2011 to 2019 were carried out to evaluate this forecast model.The results showed that the accuracy of the model was very high.The prediction of precipitation year-to-year increment and anomaly are correct with the same sign like the observation in 8 years out of 9 years.The RMSE of precipitation anomalies was 13%.The years with relative bias within ±15% are 8 years out of 9 years.Thus, this model can improve the forecasting capability of precipitation in the southern Qinghai-Xizang Plateau during the flood period.At last, the physical mechanism of the predictors affecting precipitation during the flood period was explored based on the monthly NCEP/NCAR reanalysis data and the NOAA sea surface temperature data.
Shaoge DENG
,
Yijia HU
,
Tingzhen Lü
,
Wei YAN
. Prediction of Precipitation in the Southern Qinghai-Xizang Plateau during the Flood Period Based on the Interannual Increment Approach[J]. Plateau Meteorology, 2021
, 40(4)
: 737
-746
.
DOI: 10.7522/j.issn.1000-0534.2020.00047
[1]Bothe O, Fraedrich K, Zhu X, 2010.The large-scale circulations and summer drought and wetness on the Qinghai-Xizang Plateau[J].International Journal of Climatology, 30(6): 844-855.DOI: 10. 1002/joc.1946.
[2]Bothe O, Fraedrich K, Zhu X, 2011.Large-scale circulations and Qinghai-Xizang Plateau summer drought and wetness in a high-resolution climate model[J].International Journal of Climatology, 31(6): 832-846.DOI: 10.1002/joc.2124.
[3]Fan K, 2009.Predicting winter surface air temperature in Northeast China[J].Atmospheric and Oceanic Science Letters, 2(1): 14-17.
[4]Fan K, 2010.A prediction model for Atlantic named storm frequency using a year-by-year increment approach[J].Weather and Forecasting, 25(6): 1842-1851.
[5]Fan K, Wang H J, 2009.A new approach to forecasting typhoon frequency over the western North Pacific[J].Weather and Forecasting, 24(4): 974-986.
[6]Fan K, Wang H J, 2010.Seasonal prediction of summer temperature over Northeast China using a year-to-year incremental approach[J].Acta Meterologica Sinica, 24(3): 269-275.
[7]Gao Y, Wang H J, Li S, 2013.Influences of the Atlantic Ocean on the summer precipitation of the southern Qinghai-Xizang Plateau[J].Journal of Geophysical Research: Atmospheres, 118(9): 3534-3544.DOI: 10.1002/jgrd.50290.
[8]Hu Y J, Zhu Y M, Zhong Z, al et, 2014.New predictors and a statistical forecast model for Mei-Yu Onset Date in the middle and lower reaches of the Yangtze River Valley[J].Weather and Forecasting, 29(3): 654-665.
[9]Liu H C, Duan K Q, Li M, al et, 2015.Impact of the North Atlantic Oscillation on the Dipole Oscillation of summer precipitation over the central and eastern Tibetan Plateau[J].International Journal of Climatology, 35(15): 4539-4546.DOI: 10.1002/joc.4304.
[10]Liu X, Yin Z Y, 2001.Spatial and temporal variation of summer precipitation over the Eastern Tibetan Plateau and the North Atlantic Oscillation[J].Journal of Climate, 14(13): 2896-2909.
[11]Peng S L, Robinson W A, Li S L, 2002.North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability[J].Geophysical Research Letters, 29(8): 117-1-117-4.DOI: 10.1029/2001GL014043.
[12]Sutton R T, Norton W A, Jewson S P, 2001.The North Atlantic Oscillation-What role for the Ocean?[J].Atmospheric Science Letters, 1(2): 89-100.
[13]Zhu X, Bothe O, Fraedrich K, 2011.Summer atmospheric bridging between Europe and East Asia influences on drought and wetness on the Tibetan Plateau[J].Quaternary International, 236(1/2): 151-157, DOI: 10.1016/j.quaint.2010.06.015.
[14]白虎志, 马振锋, 董文杰, 2005.青藏高原地区季风特征及与我国气候异常的联系[J].应用气象学报, 16(4): 484-491.
[15]陈乾金, 高波, 张强, 2000.青藏高原冬季雪盖异常与冬季风变异及其相互联系的物理诊断研究[J].大气科学, 24(4): 477-491.
[16]陈兴芳, 宋文玲, 2000.欧亚和青藏高原冬春季积雪与我国夏季降水关系的分析和预测应用[J].高原气象, 19(2): 214-223.
[17]陈悦, 李文铠, 郭维栋, 2019.青藏高原季风的季节内振荡特征[J].高原气象, 38(6): 1158-1171.DOI: 10.7522/j.issn.1000-0534. 2019.00001.
[18]董敏, 余建锐, 1997.青藏高原春季积雪对大气环流影响的模拟研究 [J].应用气象学报, 8(): 100-109.
[19]范可, 林美静, 高煜中, 2008.用年际增量方法预测华北汛期降水[J].中国科学: 地球科学, 38(11): 1452-1459.
[20]范可, 王会军, Choi Y J, 2007.一个长江中下游夏季降水的物理统计预测模型[J].科学通报, 52(24): 2900-2905.
[21]韩熠哲, 马伟强, 王炳赟, 等, 2017.青藏高原近30年降水变化特征分析[J].高原气象, 36(6): 1477-1486.DOI: 10.7522/j.issn. 1000-0534.2016.00125.
[22]贾亚俊, 胡轶佳, 钟中, 等, 2015.夏季西太平洋副热带高压指数的统计预测模型[J].高原气象, 34(5): 1369-1378.DOI: 10. 7522/j.issn.1000-0534.2014.00079.
[23]建军, 杨志刚, 卓嘎, 2012.近30a西藏汛期强降水事件的时空变化特征[J].高原气象, 31(2): 380-386.
[24]李建, 周天军, 宇如聪, 2007.利用大气环流模式模拟北大西洋海温异常强迫响应[J].大气科学, 31(4): 561‐570.
[25]李启芬, 刘婷婷, 陈海山, 等, 2016.基于土壤湿度和年际增量方法的中国夏季气温预测试验[J].气象科学, 36(5): 629-638.DOI: 10.3969/2015jms.0060.
[26]李晓英, 姚正毅, 肖建华, 等, 2016.1961 -2010年青藏高原降水时空变化特征分析[J].冰川冻土, 38(5): 1233-1240.DOI: 10. 7522/j.issn.1000-0240.2016.0144.
[27]林厚博, 游庆龙, 焦洋, 等, 2016.青藏高原及附近水汽输送对其夏季降水影响的分析[J].高原气象, 35(2): 309-317.DOI: 10. 7522/j.issn.1000-0534.2014.00146.
[28]刘焕才, 段克勤, 2012.北大西洋涛动对青藏高原夏季降水的影响[J].冰川冻土, 34(2): 311-318.
[29]刘焕才, 李曼, 石培宏, 等, 2015.NAO对青藏高原中东部夏季降水双极振荡模态影响的时间尺度厘定[J].高原气象, 34(3): 633-641.DOI: 10.7522/j.issn.1000-0534.2015.00031.
[30]刘晓东, 侯萍, 1999.青藏高原中东部夏季降水变化及其与北大西洋涛动的联系[J].气象学报, 57(5): 561-570.
[31]刘颖, 范可, 张颖, 2013.基于CFS模式的中国站点夏季降水统计降尺度预测[J].大气科学, 37(6): 1287-1296.DOI: 10.3878/j.issn.1006-9895.2012.12143.
[32]刘颖, 任宏利, 张培群, 等, 2017.利用高原积雪信号改进我国南方夏季降水预测的新方法及其在2014年降水预测中的应用试验[J].大气科学, 41(2): 313-320.DOI: 10.3878/j.issn.1006-9895.1605.16104.
[33]吕廷珍, 邓少格, 胡轶佳, 等, 2015.利用年际增量法对西北东部汛期降水的定量预测研究[J].干旱气象, 33(3): 386-394.DOI: 10.11755/j.issn.1006-7639(2015)-03-0386.
[34]齐文文, 张百平, 庞宇, 等, 2013.基于TRMM数据的青藏高原降水的空间和季节分布特征[J].地理科学, 33(8): 999-1005.
[35]汤懋苍, 沈志宝, 陈有虞, 1979.高原季风的平均气候特征[J].地理学报, 34(1): 33-41.
[36]汤懋苍, 梁娟, 邵明镜, 等, 1984.高原季风年际变化的初步分析[J].高原气象, 3(3): 75-82.
[37]王传辉, 唐晓萍, 吴萍, 2010.西藏高原汛期不同等级降水变化特征分析[J].干旱气象, 28(4): 384-390.
[38]王传辉, 周顺武, 唐晓萍, 等, 2011.近48年青藏高原强降水量的时空分布特征[J].地理科学, 31(4): 470-477.
[39]王婷, 李照国, 吕世华, 等, 2019.青藏高原积雪对陆面过程热量输送的影响研究[J].高原气象, 38(5): 920-934.DOI: 10.7522/j.issn.1000-0534.2019.00026.
[40]徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961 -2010年青藏高原气候变化特征分析[J].高原气象, 38(5): 911-919.DOI: 10.7522/j.issn.1000-0534.2018.00137.
[41]张宁瑾, 肖天贵, 假拉, 2018.1979 -2016年青藏高原降水时空特征[J].干旱气象, 36(3): 373-382.DOI: 10.11755/j.issn. 1006-7639(2018)-03-0373.
[42]张丹琦, 孙凤华, 张耀存, 2019.基于BCC第二代短期气候预测模式系统的中国夏季降水季节预测评估[J].高原气象, 38(6): 1229-1240.DOI: 10.7522/j.issn.1000-0534.2018.00149.
[43]周顺武, 假拉, 2003.印度季风的年际变化与高原夏季旱涝[J].高原气象, 22(4): 410-415.
[44]邹进上, 曹彩珠, 1989.青藏高原降雪的气候学分析[J].大气科学, 13(4): 400-409.