Using the daily precipitation observation data of 121 stations in the southwest China from 1961 to 2019, the southwest China is divided into three regions: southwest I, southwest II, and southwest III, according to the REOF positive anomalies of precipitation, and analyzes the characteristics of abrupt drought-flood alternations of these districts.The results show that there are obvious regional differences and similarities in the abrupt drought-flood alternations in summer in Southwest China.There are fewer severe abrupt drought-flood alternations in region I and some strong abrupt drought-flood alternations mainly occurred before 2000.And there was a relatively obvious interdecadal oscillation in the abrupt drought-flood alternations index in region II from 1961 to 1990, more drought-to-flood events occurred from 1961 to 1970.What’s more, there are more flood-to-drought events occurred from 1971 to 1980.Then the intensity of abrupt drought-flood alternations from 1980 to 1990 was more pronounced.Smaller, it gradually turned into an interannual oscillation after 1990.The overall abrupt drought-flood alternations index in region III was relatively low.It has obvious interannual oscillations from 1975 to 2000.But after 2010, the abrupt drought-flood alternations events showed an increasing trend.Further research on the atmospheric circulation characteristics of typical abrupt drought-flood alternations years in each region found that during the drought period of the three regions, at mid-to-high latitudes, high-altitude westerly winds were strong and zonal air currents prevailed.At mid-low latitudes, the western Pacific subtropical high was stronger to the west, the South China Sea-Pacific and Indian Ocean-Bay of Bengal water vapor transport was weak, and sinking air currents prevail in the lower layers, resulting in less precipitation.The circulation situation during the flooding period in the three regions is complex.During the flooding period in region I, the mid-high latitude circulation presented a "-+-" zonal wave train, the Ural Mountains high pressure ridge deepened, the western Pacific subtropical high was northeast and east, the water vapor transport in the Bay of Bengal was enhanced, the upward movement was enhanced, and the precipitation was more frequent.While during the flooding period in region II, the mid-high latitude circulation presented a "-+" zonal wave train, the Okhotsk high pressure ridge strengthened, the western Pacific subtropical high was northeast and the southern branch trough was obvious, and the water vapor transport in the Pacific and Indian Oceans enhanced.So that the precipitation is on the high side.However, during the flooding period in region III, the mid-high latitude circulation presented a "+-+-" zonal wave train, the Ural high pressure ridge and the Baikal low pressure trough strengthened, the western Pacific subtropical high was northeast and the Gulf of Bengal-Indian Ocean water vapor strengthened, and precipitation was more frequent.
Yingsi WANG
,
Tiangui XIAO
,
Xuefeng DONG
. Characteristics of Long-Cycle Abrupt Drought-Flood Alternations in Southwest China and Atmospheric Circulation in Summer from 1961 to 2019[J]. Plateau Meteorology, 2021
, 40(4)
: 760
-772
.
DOI: 10.7522/j.issn.1000-0534.2020.00067
[1]白莹莹, 张焱, 李强, 等, 2014.四川盆地夏季降水区域差异及其与季风的联系初探[J].气象, 40(4): 440-449.
[2]池再香, 胡跃文, 夏阳, 等, 2019.云贵高原东部两次典型气象干旱年汛期环流特征对比[J].高原气象, 38(3): 528-538.DOI: 10.7522/j.issn.1000-0534.2018.00161.
[3]陈丹, 周长艳, 齐冬梅, 2019.夏季青藏高原及周边大气热源与四川盆地暴雨的关系[J].高原气象, 38(6): 1149-1157.DOI: 10.7522/j.issn.1000-0534.2019.00041.
[4]樊华, 张泽中, 徐建新, 等, 2019.贵州省1968-2017年旱涝急转时空演变特征分析[J].人民长江, 50(12): 13-20.
[5]何慧, 廖雪萍, 陆虹, 等, 2016.华南地区1961-2014年夏季长周期旱涝急转特征[J].地理学报, 71(1): 130-141.
[6]胡豪然, 梁玲, 2015.近50年西南地区降水的气候特征及区划[J].西南大学学报(自然科学版), 37(7): 146-154.
[7]黄荣辉, 蔡榕硕, 陈际龙, 等, 2006.我国旱涝气候灾害的年代际变化及其与东亚气候系统变化的关系[J].大气科学, 30(5): 730-743.
[8]黄荣辉, 刘永, 王林, 等, 2012.2009年秋至2010年春我国西南地区严重干旱的成因分析[J].大气科学, 36(3): 443-457.
[9]李永华, 徐海明, 刘德, 2009.2006年夏季西南地区东部特大干旱及其大气环流异常[J].气象学报, 67(1): 122-132.
[10]李永华, 徐海明, 高阳华, 等, 2010.西南地区东部夏季旱涝的水汽输送特征[J].气象学报, 68(6): 932-943.
[11]刘燕, 王谦谦, 程正泉, 2002.我国西南地区夏季降水异常的区域特征[J].南京气象学院学报, 25(1): 105-110.
[12]庞轶舒, 马振峰, 杨淑群, 等, 2017.盛夏高原季风指数的探讨及其对四川盆地降水的影响[J].高原气象, 36(4): 886-899.DOI: 10.7522/j.issn.1000-0534.2016.00027.
[13]庞轶舒, 秦宁生, 王春学, 等, 2020.ENSO事件的季节演变对西南夏季降水异常的影响分析[J].高原气象, 39(3): 581-593.DOI: 10.7522/j.issn.1000-0534.2019.00044.
[14]彭京备, 张庆云, 布和朝鲁, 2007.2006年川渝地区高温干旱特征及其成因分析[J].气候与环境研究, 12(3): 464-474.
[15]彭高辉, 秦琳琳, 马建琴,等, 2018.1955-2015年郑州夏季旱涝急转特征分析[J].南水北调与水利科技, 16(6): 27-32.
[16]屈文军, 张小曳, 王丹, 等, 2004.西风带研究的重要意义[J].海洋地质与第四纪地质, 24(1): 125-132.
[17]闪丽洁, 张利平, 张艳军, 等, 2018.长江中下游流域旱涝急转事件特征分析及其与ENSO的关系[J].地理学报, 73(1): 25-40.
[18]孙小婷, 李清泉, 王黎娟, 2017.我国西南地区夏季长周期旱涝急转及其大气环流异常[J].大气科学, 41(6): 1332-1342.
[19]唐明, 邵东国, 姚成林, 2007.沿淮淮北地区旱涝急转的成因及应对措施[J].中国水利水电科学研究院学报, 5(1): 26-32.
[20]田红, 郭品文, 陆维松, 2004.中国夏季降水的水汽通道特征及其影响因子分析[J].热带气象学报, 20(4): 401-408.
[21]王斌, 李跃清, 2010.2010年秋冬季西南地区严重干旱与南支槽关系分析[J].高原山地气象研究, 30(4): 26-35.
[22]王慧, 王谦谦, 2002.近49年来淮河流域降水异常及其环流特征[J].气象科学, (2): 149-158.
[23]王梦珂, 毕吴瑕, 翁白莎, 等, 2019.旱涝急转对作物生长发育及产量的影响研究综述[J].水利水电技术, 50(11): 189-196.
[24]王容, 李相虎, 薛晨阳,等, 2020.1960-2012年鄱阳湖流域旱涝急转事件时空演变特征[J].湖泊科学, 32(1): 207-222.
[25]王胜, 田红, 丁小俊, 等, 2009.淮河流域主汛期降水气候特征及“旱涝急转”现象[J].中国农业气象, 30(1): 31-34.
[26]吴志伟, 李建平, 何金海, 等, 2006.大尺度大气环流异常与长江中下游夏季长周期旱涝急转[J].科学通报, 51(14): 1717-1724.
[27]邢彩盈, 胡德强, 吴胜安, 等, 2018.海南岛后汛期旱涝急转及其海气异常特征分析[J].干旱气象, 36(4): 568-577.
[28]杨辉, 宋洁, 晏红明, 等, 2012.2009/2010年冬季云南严重干旱的原因分析[J].气候与环境研究, 17(3): 315-326.
[29]杨金虎, 孙兰东, 林婧婧, 等, 2015.西北东南部夏季旱涝急转异常分析及预测研究[J].自然资源学报, 30(2): 282-292.
[30]杨星星, 杨云川, 邓思敏, 等, 2019.广西月尺度旱涝急转时空演变特征[J].自然灾害学报, 28(6): 192-203.
[31]张庆云, 陶诗言, 2003.夏季西太平洋副热带高压异常时的东亚大气环流特征[J].大气科学, 27(3): 369-380.
[32]张荣, 庞晶, 覃军, 2012.近60年西南地区降水异常的气候特征分析[J].安徽农业科学, 40(30): 14873-14875.
[33]张水锋, 张金池, 闵俊杰, 等, 2012.基于径流分析的淮河流域汛期旱涝急转研究[J].湖泊科学, 24(5): 679-686.
[34]张万诚, 汤阳, 郑建萌, 等, 2012.夏季风水汽输送对云南夏季旱涝的影响[J].自然资源学报, 27(2): 293-301.
[35]张天宇, 唐红玉, 雷婷, 等, 2014.重庆夏季旱涝急转与大气环流异常的联系[J].云南大学学报(自然科学版), 36(1): 79-87.
[36]张玉琴, 李栋梁, 2019.华南汛期旱涝急转及其大气环流特征[J].气候与环境研究, 24(4): 430-444.
[37]朱艳欣, 桑燕芳, 2018.青藏高原降水季节分配的空间变化特征[J].地理科学进展, 37(11): 1533-1544.