Stimulation Analysis on Differences and Force Effects of Gust Fronts in a Severe Convection Trigging Process

  • Wendong HU ,
  • Kan YANG ,
  • Xiaohang WEN ,
  • Ying ZHANG
Expand
  • <sup>1.</sup>Key Laboratory of Plateau Atmosphere and Environment of Sichuan Province,Chengdu 610225,Sichuan,China;<sup>2.</sup>College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China;<sup>3.</sup>Key Laboratory for Monitoring,Early Warning and Risk Management of Agrometeorological Disasters with Characteristics in Dry Areas,China Meteorological Administration,Yinchuan 750002,Ningxia,China;<sup>4.</sup>Ningxia Meteorological Office,Yinchuan 750002,Ningxia,China

Received date: 2020-02-28

  Online published: 2021-08-28

Abstract

In order to further explore the mechanism of severe convection triggered by gust front in arid northwest China, overcome the radar’s incapability to detect gust front, operational numeric model mesoscale WRF is applied to simulate a severe secondary convection which propagated reversely and triggered by three gust fronts in Northwest China arid area.Locally modified index is used to investigate the key factors of triggering mechanisms and comparison analysis between simulations and radar sounding data is conducted.The results show that: (1) The mesoscale WRF model relatively well reproduces the atmospheric backgrounds, but shows a limited capability to describe the convective cells and the gust fronts directly, and it is necessary to develop specific index to reveal the mechanism of convection trigging according to local meteorological situation.(2) MBI and TKE show mutual corroboration and demonstrate the differences between the 3 gust fronts and their trigging characteristics.The areas and intensities of the modified MBI high value regions are consistent with the characteristics of original convections, the out-flow edges align with the positions of the 3 gust fronts, and the core high value areas accord with the intensities of gust fronts.(3) Comprehensive conditions of the areas and intensities of MBI relating to 3 gust fronts, wind field at 850hPa and vapor diversities of surface characteristics, leads to the capability differences of 3 colliding points which trigger secondary convections, and reveal their severities and propagation behaviors.(4) Gust fronts force causes strong updraft of 1.74 m·s-1, upraising the surface air over LFC.Orographic effect contributes 1.1% of uplift, enclosing press and directly force makes up 40.9% and 58.0% respectively.Extraordinary force and favorable vapor are keys to trigger this extreme violent secondary convection, while the gravity wave propagating east at low altitude of atmosphere is favorite to trigging.(5) The numeric simulation and MBI analysis suggest that this simple and practical index is able to depict gust front’s characteristics that are difficult for models to reflect directly.It can be expected to provide clues for seamless grid forecasting after further practice.

Cite this article

Wendong HU , Kan YANG , Xiaohang WEN , Ying ZHANG . Stimulation Analysis on Differences and Force Effects of Gust Fronts in a Severe Convection Trigging Process[J]. Plateau Meteorology, 2021 , 40(4) : 773 -788 . DOI: 10.7522/j.issn.1000-0534.2020.00058

References

[1]Benjamin S J.Carlson T N, 1986.Some effects of surface heating and topography on the regional severe storm environment.Part Ι: Three-dimensional simulations[J].Monthly Weather Review, 114(1): 307-329.
[2]Bertato M, Giaiotti D B, Manzato A, al et, 2003.An interesting case of tornado in Friuli-northeastern Italy[J].Atmosphere Research, 92(1): 1-21.
[3]Bretherton C S, McCann J R, Grenier H, 2004.A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers.Part I: Description and 1D results[J].Monthly Weather Review, 132(4): 864-882.
[4]Cearns A J, Colquhoun R, 1998.Objective prediction of severe thunderstorm environments: Preliminary results linking a decision tree with an operational regional NWP model[J].Weather Forecasting, 13(8): 1078-1092.
[5]Carlson T N, 1961.Lee side frontgenesis in the Rocky Mountains[J].Monthly Weather Review, 89(1): 163-172.
[6]Ching J, Rotunno R, Le Mone M A, al et, 2014.Convectively induced secondary circulations in fine-grid mesoscale numerical weather prediction models[J].Monthly Weather Review, 142(12): 3284-3302.
[7]Crook A, Tuttle J D, 1994.Numerical simulations initialized with radar-derived winds.Part II: forecasts of three gust-front cases[J].Monthly Weather Review, 122(9): 1204-1217.
[8]Diao X, Zhu J, Liu Z, 2011.Analysis of three supercell storms with Doppler weather radar data[J].Acta Meteorologica Sinica, 69(1): 85-97.
[9]Fabry F, 2006.The spatial variability of moisture in the boundary layer and its effect on convection initiation[J].Monthly Weather Review, 134(1): 79-91.
[10]Geerts B, 2001.Estimating downburst-related maximum surface wind speeds by means of proximity soundings in New South Wales, Australia[J].Weather Forecasting, 16(1): 261-269.
[11]Hobbs P V, Locatelli J D, Martine J E, 1996.A new conceptual model for cyclones generated in the lee of the Rocky Mountains[J].Bulletin of America Meteorological Society, 77(4): 1169-1178.
[12]Hong S Y, Noh Y, Dudhia J, 2006.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Monthly Weather Review, 134(9): 2318-2341.
[13]Kain J S, Coniglio M C, Correia J, al et, 2013.A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance[J].Bulletin of America Meteorological Society, 94(7): 1213-1225.
[14]Mario M M, 2017.Numerical simulations of a tornadic supercell over the Mediterranean[J].Weather Forecasting, 32(5): 1209-1226.
[15]Mark M, Roeder W, 1996.Forecasting wet microburst on the central Florida Atlantic coast in support of the United States space program[C].Preprints.18th Conference.on severe local storms, 654-658.
[16]Markowski P M, Richardson Y, Dotzek N, 2011.A numerical study of the effects of orography on supercells[J].Atmosphere Research, 100(2): 457-478.
[17]McCann D, 1994.WINDEX: A new index for forecasting microburst potential[J].Weather Forecasting, 9(3): 532-541
[18]Olson D A, Junker N W, Korty B, 1995.Evaluation of 33 years of quantitative precipitation forecasting at the NMC[J].Weather Forecasting, 10(3): 498-511.
[19]Rochetin N, Couvreux F, Grandpeix J Y, al et, 2014.Convection triggering by boundary layer thermals.Part I: LES analysis and stochastic triggering formulation[J].Journal of Atmospheric Sciences, 71(2): 496-514.
[20]Steenburgh W J, Mass C F, 1994.The structure and evolution of a simulated Rocky mountain lee trough[J].Monthly Weather Review, 122(9): 2740-2761.
[21]Sun J, Crook A, 1994.Wind and thermodynamic retrieval from single-Doppler measurements of a gust front observed during Phoenix II[J].Monthly Weather Review, 122(4): 1075-1091.
[22]Wakimoto R M, 2001.Convectively driven high wind events, severe convective storms[J].Meteorology Monography., 50(2): 255-298.
[23]Weaver J F, Nelson S T, 1982.Multiscale aspects of thunderstorm gust fronts and their effects on subsequent storm development[J].Monthly Weather Review, 110(1): 707-718.
[24]William A, Gallus G, Correia J, al et, 2005.The 4 June 1999 Derecho event: A particularly difficult challenge for Numerical weather prediction[J].Weather Forecasting, 20(3): 705-728.
[25]Xu Q, Gu H, Qiu H, 2001.Simple adjoint retrievals of wet-microburst winds and gust-front winds from single-Doppler radar data[J].Journal of Applied Meteorology, 40(5): 1485-1499.
[26]陈明轩, 肖现, 高峰, 2017.出流边界对京津冀地区强对流局地新生及快速增强的动力效应[J].大气科学, 41(5): 897-917.
[27]符式红, 王秀明, 俞小鼎, 2018.相似环流背景下海南两次不同类型强对流天气对比研究[J].气象学报, 76(5): 742-754.
[28]高晓梅, 俞小鼎, 王令军, 等, 2018.鲁中地区分类强对流天气环境参量特征分析[J].气象学报, 76(2): 196-212.
[29]胡文东, 陈晓光, 刘建军.2003.宁夏夏季逐时降水与地球同步气象卫星红外资料的关系分析[J].宁夏工程技术, 2(4): 310-314
[30]胡文东, 陶林科, 杨侃, 等, 2008.西北干旱区一次阵风锋天气过程分析[J].中国沙漠, 28(2): 349-356.,
[31]胡文东, 杨侃, 黄小玉, 等, 2015.一次阵风锋触发强对流过程雷达资料特征分析[J].高原气象, 34(5): 1452-1464.DOI: 10. 7522/j.issn.1000-0534.2014.00099.
[32]姜平, 刘晓冉, 朱浩楠, 等, 2019.复杂地形下局地山谷风环流的理想数值模拟[J].高原气象, 38( 6): 1272-1282.DOI: 10.7522/j.issn.1000-0534.2019.00019.
[33]马铮, 沈新勇, 黄文彦, 等, 2017.一次梅雨锋暴雨的边界层热通量输送与湍流动能收支分析[J].气象科学, 37(6): 753-765.
[34]陶局, 易笑园, 赵海坤, 等, 2019.一次飑线过程及其受下垫面影响的数值模拟[J].高原气象, 38( 4): 756-772.DOI: 10. 7522 /j.issn.1000-0534.2019.00035.
[35]王秀明, 俞小鼎, 2019.热带一次致灾龙卷形成物理过程研究[J].气象学报, 77(3): 387-404,
[36]王彦, 高守亭, 梁钊明, 2014.渤海湾海风锋触发雷暴的观测和模拟分析[J].高原气象, 33(3): 848-854.DOI: 10.7522 /j.issn. 1000-0534.2013.00030.
[37]吴举秀, 周青, 杨传凤, 等, 2017.2015年7月14日阵风锋及锋后大风多普勒天气雷达产品特征分析[J].高原气象, 36(4): 1082-1090.DOI: 10.7522 /j.issn.1000-0534.2016.00090.
[38]武麦凤, 吉庆, 武维刚, 2017.一次槽前“干”对流背景下阵风锋天气过程分析[J].高原气象, 36(3): 845-851.DOI: 10.7522/j.issn.1000-0534.2016.00055.
[39]夏文梅, 慕熙昱, 徐琪, 等, 2011.一次阵风锋过程的数值模拟与分析[J].高原气象, 30(4): 1087-1095.
[40]杨显玉, 文军, 牛广山, 等, 2020.西北地区的快速更新循环同化预报系统性能检验和评估[J].高原气象, 39(1): 90-101.DOI: 10.7522/j.issn.1000-0534.2019.00010.
[41]肖云清, 胡文东, 赵立斌, 等, 2008.宁夏中北部两次强暴雨过程综合对比分析[J].高原气象, 27(3): 576-583.
[42]许晨璐, 王建捷, 黄丽萍, 2017.千米尺度分辨率下GRAPES Meso4.0模式定量降水预报性能评估[J].气象学报, 75(6): 851-876.
[43]杨侃, 郭建茂, 冯双磊, 等, 2019.C波段雷达快速循环同化技术在宁夏降水天气预报中的应用[J].科学技术与工程, 19(1): 44-50.
[44]杨侃, 纪晓玲, 毛璐, 等, 2020.异常环流背景下贺兰山地形对8.21特大致洪暴雨的影响分析[J].自然灾害学报, 29(01): 132-142.
[45]俞小鼎, 周小刚, 王秀明, 2012.雷暴与强对流临近天气预报技术进展[J].气象学报, 70(3), 311-337.
[46]岳彩军, 袁招洪, 陶岚, 等, 2016.上海地区一次阵风锋结构特征与动量收支诊断分析[J].高原气象, 35(3): 788-799.DOI: 10.7522/j.issn.1000-0534.2015.00019.
[47]张君霞, 黄倩, 田文寿, 等, 2018.对流冷池对黑风暴沙尘抬升和传输影响的大涡模拟研究[J].高原气象, 37( 3): 850-862.DOI: 10.7522/j.issn.1000-0534.2018.00046.
[48]赵庆云, 张武, 陈晓燕, 等, 2018.一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J].高原气象, 37( 3): 767-776.DOI: 10.7522/j.issn.1000-0534.2017.00068.
[49]郑媛媛, 俞小鼎, 方翀, 等, 2004.一次典型超级单体风暴的多普勒天气雷达观测分析[J].气象学报, 62(1): 62-73.
Outlines

/