Analysis of the Heavy Precipitation Caused by Plateau Vortex in Northwest China Based on Satellite Data

  • Dong WEI ,
  • Liwei LIU ,
  • Wenshou TIAN ,
  • Rui WANG ,
  • Xiaojun YANG ,
  • Chenrui LI ,
  • Junxia ZHANG
Expand
  • <sup>1.</sup>Key Laboratory for Semi-Arid Climate Change of the Ministry of Education,College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000,Gansu,China;<sup>2.</sup>Lanzhou Central Meteorological Observatory,Lanzhou 730020,Gansu,China;<sup>3.</sup>Regional Climate Center of Lanzhou,Lanzhou 730020,Gansu,China

Received date: 2020-11-24

  Online published: 2021-08-28

Abstract

Global Precipitation Measurement (GPM) satellites has been currently widely used in the study of convective systems at present.Limited by the orbital scanning mode of GPM satellite, it was difficult to capture complete severe convective systems with GPM orbital observation data in the eastern region of the Tibetan Plateau.In this study, the structure of a heavy rainfall system occurred over this region on 21 July 2018 has been researched by using GPM and FY-4A satellite data, ERA-Interim and NCEP-FNL reanalysis data in combination with ground observation data.The result indicates that although the number of convective cloud samples was 1/5 of the stratiform cloud samples, but averaged convective rainfall rate was 14 times larger than the stratiform rainfall rate and the contribution of convective rainfall to the total precipitation reached 75%.The contribution of convective rainfall is much higher than that of southern China heavy rainfall system.The top of the heavy rainfall system reached up to 15 km with a low core structure about 2 km above the ground, which was more obvious than that of similar strong convective systems in southern China.The convective cloud droplet spectrum and cloud particle radius differ widely.There was an obvious particle accumulation zone in convective cloud at the height of 2~5 km, which was significantly different from the stratiform cloud.In the early stage of heavy rainfall, precipitable water reached to 40 kg·m-2 with relative humidity to 16 g·kg-1.The heavy rainfall system triggered by plateau vortex and shear line at 700 hPa, consisted of a main stratiform precipitation cloud cluster and several scattered convective precipitation cloud clusters characterized by high precipitation intensity.Blocked by the high-pressure ridge, the quasi-stationary rainstorm cloud cluster took nearly 4 h from the initial stage to the strongest stage within 3 longitudes.The slow movement of heavy rain clouds led to local heavy rainfall in southeast Gansu.

Cite this article

Dong WEI , Liwei LIU , Wenshou TIAN , Rui WANG , Xiaojun YANG , Chenrui LI , Junxia ZHANG . Analysis of the Heavy Precipitation Caused by Plateau Vortex in Northwest China Based on Satellite Data[J]. Plateau Meteorology, 2021 , 40(4) : 829 -839 . DOI: 10.7522/j.issn.1000-0534.2021.000021

References

[1]Cifelli R, Petersen W A, Carey L D, al et, 2002.Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA[J].Journal of Geophysical Research: Atmospheres, 107(D20): 44-60.
[2]Gettelman A, Salby M L, Sassi F, 2002.Distribution and influence of convection in the tropical tropopause region[J].Journal of Geophysical Research: Atmospheres, 107(D10): 9-10.
[3]Hirose M, Nakamura K, 2005.Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM Precipitation Radar[J].Journal of Geophysical Research: Atmospheres, 110(D5): 1-14.
[4]Hong G, Heygster G, Miao J G, al et, 2005.Detection of tropical deep convective clouds from AMSU‐B water vapor channels measurements[J].Journal of Geophysical Research: Atmospheres, 110(D5): 1-15.
[5]Hou A Y, Kakar R K, Neeck S, al et, 2014.The global precipitation measurement mission[J].Bulletin of the American Meteorological Society, 95(5): 701-722.
[6]Liu N N, Liu C T, 2016.Global distribution of deep convection reaching tropopause in 1 year GPM observations[J].Journal of Geophysical Research: Atmospheres, 121(8): 3824-3842.
[7]Matrosov S Y, Heymsfield A J, 2008.Estimating ice content and extinction in precipitating cloud systems from CloudSat radar measurements[J].Journal of Geophysical Research: Atmospheres, 113(D00A05): 1-8.
[8]Tan M L, Duan Z, 2017.Assessment of GPM and TRMM precipitation products over Singapore[J].Remote Sensing, 9(7): 720-721.
[9]Tang G Q, Zeng Z Y, Long D, al et, 2016.Statistical and hydrological comparisons between TRMM and GPM level-3 products over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7 [J].Journal of Hydrometeorology, 17(1): 121-137.
[10]Xu W X, Zipser E J, 2015.Diurnal Variations of Precipitation, Deep Convection, and Lightning over and East of the Eastern Tibetan Plateau[J].Journal of Climate, 24(2): 448-465.
[11]Yuter S E, Houze R A, 1995.Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus.Part I: Spatial Distribution of Updrafts, Downdrafts, and Precipitation[J].Monthly Weather Review, 123(7): 1921-1940.
[12]Zhao H G, Yang B G, Yang S T, al et, 2018.Systematical estimation of GPM-based global satellite mapping of precipitation products over China[J].Atmospheric Research, 201: 206-217.
[13]Zipser E J, Liu C T, Cecil D J, al et, 2006.Where are the most intense thunderstorms on Earth?[J].Bulletin of the American Meteorological Society, 87(8): 1057-1071.
[14]陈渭民, 2003.卫星气象学[M].北京: 气象出版社.
[15]程立真, 杨梅学, 王学佳,等, 2020.TRMM 3B42降水产品在洮河中上游的精度评估分析[J].高原气象, 39(1): 188-198.DOI: 10.7522/j.issn.1000-0534.2019.00016.
[16]符淙斌, 安芷生, 郭维栋, 2005.我国生存环境演变和北方干旱化趋势预测研究 (Ⅱ): 研究成果的创新性及项目实施效果[J].地球科学进展, 20(11): 1168-1175.
[17]傅云飞, 曹爱琴, 李天奕, 等, 2012.星载测雨雷达探测的夏季亚洲对流与层云降水雨顶高度气候特征[J].气象学报, 70(3): 436-451.
[18]傅云飞, 李宏图, 自勇, 2007.TRMM卫星探测青藏高原谷地的降水云结构个例分析[J].高原气象, 26(1): 98-106.
[19]傅云飞, 宇如聪, 徐幼平, 等, 2003.TRMM 测雨雷达和微波成像仪对两个中尺度特大暴雨降水结构的观测分析研究[J].气象学报, 61(4): 421-431.
[20]郭大梅, 陈小婷, 刘勇, 2015.西北气流控制下陕西两次大范围降水天气分析[J].陕西气象, 6(3): 8-13.
[21]何文英, 陈洪滨, 2006.TRMM卫星对一次冰雹降水过程的观测分析研究[J].气象学报, 64(3): 364-376.
[22]黄晨然, 2015.中国西北地区极端降水研究和风云卫星资料在短时强降水中的应用[D].兰州: 兰州大学.
[23]黄士松, 汤明敏, 1987.论东亚夏季风体系的结构[J].气象科学,7 (3): 4-17.
[24]蒋璐君, 李国平, 王兴涛, 2015.基于 TRMM 资料的高原涡与西南涡引发强降水的对比研究[J].大气科学, 39(2): 249-259.
[25]井喜, 李栋梁, 李明娟, 等, 2008.青藏高原东北侧一次突发性大暴雨环境场综合分析[J].高原气象,27(1): 46-57.
[26]李德俊, 李跃清, 柳草, 等, 2009.利用 TRMM 卫星资料对 “07·7” 川南特大暴雨的诊断研究[J].暴雨灾害, 28(3): 235-240.
[27]李栋梁, 邵鹏程, 王慧, 等, 2013.中国东亚副热带夏季风北边缘带研究进展[J].高原气象, 32(1): 305-314.DOI: 10.7522/j.issn.1000-0534.2012.00030.
[28]李栋梁, 谢金南, 王文, 1997.中国西北夏季降水特征及其异常研究[J].大气科学, 21(3): 331-340.
[29]李积明, 黄建平, 衣育红, 等, 2009.利用星载激光雷达资料研究东亚地区云垂直分布的统计特征[J].大气科学, 33(4): 698-707.
[30]刘治国, 陶健红, 杨建才,等, 2008.冰雹云和雷雨云单体VIL演变特征对比分析[J].高原气象, 27(6): 1363-1374.
[31]祁秀香, 郑永光, 2009.2007 年夏季我国深对流活动时空分布特征[J].应用气象学报, 20(3): 286-294.
[32]尚杰, 李庆, 于法稳, 2006.生态环境胁迫下西北地区农业产业结构分析[J].开发研究, 1(1): 11-13.
[33]孙继松, 何娜, 郭锐,等, 2013.多单体雷暴的形变与列车效应传播机制[J].大气科学, 37(1): 137-148.
[34]涂长望, 黄士松, 1944.中国夏季风之进退[J].气象学报, 18(1): 1-20.
[35]王宝鉴, 黄玉霞, 魏栋,等, 2017.TRMM卫星对青藏高原东坡一次大暴雨强降水结构的研究[J].气象学报, 75(6): 118-132.
[36]吴学珂, 郄秀书, 袁铁, 2013.亚洲季风区深对流系统的区域分布和日变化特征[J].中国科学: 地球科学, 43(4): 556-569.
[37]肖柳斯, 张阿思, 闵超,等, 2019.GPM卫星降水产品在台风极端降水过程的误差评估[J].高原气象, 38(5): 85-95.DOI: 10. 7522/j.issn.1000-0534.2018.00143.
[38]许东蓓, 许爱华, 肖玮,等, 2016.中国西北四省区强对流天气形势配置及特殊性综合分析[J].无损检测, 34(3): 973-981.
[39]俞小鼎, 周小刚, 王秀明, 2012.雷暴与强对流临近天气预报技术进展[J].气象学报, 70(3): 311-337.
[40]袁铁, 郄秀书, 2010.基于 TRMM 卫星对一次华南飑线的闪电活动及其与降水结构的关系研究[J].大气科学, 34(1): 58-70.
[41]张之贤, 张强, 赵庆云, 等, 2013.“8·8”舟曲特大山洪泥石流灾害天气特征分析[J].高原气象, 32(1): 290-297.DOI: 10.7522/j.issn.1000-0534.2012.00028.
[42]赵震, 2019.2016年台风"莫兰蒂"结构特征的多源卫星探测分析[J].高原气象, 38(1): 159-167.DOI: 10.7522/j.issn.1000-0534.2018.00065.
[43]郑永光, 王颖, 寿绍文, 2010.我国副热带地区夏季深对流活动气候分布特征[J].北京大学学报(自然科学版), 46(5): 793-804.
[44]郑媛媛, 傅云飞, 刘勇, 等, 2004.热带测雨卫星对淮河一次暴雨降水结构与闪电活动的研究[J].气象学报, 62(6): 790-802.
[45]朱乾根, 杨松,1989.东亚副热带季风的北进及其低频振荡[J].大气科学学报, 12(3): 249-258.
Outlines

/