The effect of artificial precipitation enhancement has always been a key issue and difficult problem of weather modification, and there is great uncertainty about how to accurately detect the effect of precipitation enhancement after operation from the change of natural rainfall.Shiyang River, which is located at the eastern end of Hexi Corridor in Gansu Province, is an important inland river in this region.It is the main source of local agriculture, ecology and drinking water.However, it is also one of the most densely populated inland river basins in China with severe shortage of water resources and extremely fragile ecological environment.Although the Shiyang River Basin lacks ground water resources, it has very abundant aerial water resources.The scientific development and utilization of aerial cloud water resources through artificial rain enhancement technology has become one of the effective measures to increase local water resources in the basin and alleviate drought.Since 2010, in order to ameliorate adverse ecological and hydrological changes, ground cloud seeding stations has been added from 22 to 71 in Shiyang River Basin, and the seeding operations has also been significantly increased.Therefore, a question of general concern is, what is the effect of the substantial increase in the scale of artificial precipitation? To answer this question, and evaluate the effect of artificial rainfall enhancement after the increase in operation sites and operations, precipitation data of the Shiyang River Basin in the past 10 years (from 2010 to 2019) was collected.Some statistical test methods recommended by Centre for Weather Modification of China Meteorological Administration were adopted in the effect evolution of the increased ground seeding operations during 2010 -2019.As a means of certification, the ecological changing trend of runoff, vegetation normalization index, and vegetation coverage percentage were also analyzed in this paper.The results showed that the average relative artificial rainfall enhancement in the basin was about 17.5%, which passed the significance test of 0.1.The cloud seeding operations has increased precipitation by 33.7 mm and increased runoff by 0.34 × 108 m3 per year.Cloud seeding in spring and autumn were more effective than in other seasons.The runoff of Shiyang River increased by 3.7% during the cloud seeding period, while the runoff in the contrast area showed a downward trend.The vegetation in the Basin has improved significantly since 2010 because of both artificial rain enhancement and natural precipitation rise.The preliminary results show that artificial rain enhancement has played a positive role in improving the ecological situation of the Shiyang River Basin.
Peng CHENG
,
Qi CHEN
,
Youyan JIANG
,
Baozi LI
,
Han LUO
. Effect Evaluation of Artificial Rainfall Enhancement in the Shiyang River Basin of Hexi Corridor in the Latest 10 Years[J]. Plateau Meteorology, 2021
, 40(4)
: 866
-874
.
DOI: 10.7522/j.issn.1000-0534.2020.00074
[1]Breed D, Rasmussen R, Weeks C, al et, 2014.Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP)[J].Journal of Applied Meteorology & Climatology, 53(2): 282-299.DOI: 10.1175/JAMC-D-13-0128.1.
[2]DeFelice T P, Golden J, Griffith D, al et, 2014.Extra area effects of cloud seeding-An updated assessment[J].Atmospheric Research, 135/136: 193-203.DOI: 10.1016/j.atmosres.2013.08.014.
[3]Pokharel B, Geerts B, Jing X, al et, 2014.The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A multi-sensor case study of shallow precipitating orographic cumuli[J].Atmospheric Research, 147-148: 162-182.DOI: 10.1016/j.atmosres.2014.05.014.
[4]程文举, 席海洋, 张经天, 2020.黑河上游径流对极端气候变化的响应研究[J].高原气象, 39(1): 120-129.DOI: 10.7522/j.issn. 1000-0534.2019.00017.
[5]德力格尔, 汪青春, 周陆生,等, 2005.1997-1999年黄河上游玛曲地区人工增雨生态效应的检验[J].高原气象, 24(3): 442-449.
[6]邓振镛, 张强, 王润元, 等, 2013.河西内陆河径流对气候变化的响应及其流域适应性水资源管理研究[J].冰川冻土, 35(5): 1267-1275.DOI: 10.7522/j.issn.1000-0240.2013.0143.
[7]段婧, 楼小凤, 卢广献, 等, 2017.国际人工影响天气技术新进展[J].气象, 43(12): 1562-1571.DOI: 10.7519/j.issn.1000-0526. 2017.12.012.
[8]冯宏芳, 隋平, 蔡英群, 等, 2010.蓄水型人工增雨效果检验[J].气象科技, 38(4): 510-514.DOI: 10.3969/j.issn.1671-6345. 2010.04.022.
[9]冯起, 李宗礼, 高前兆, 等, 2012.石羊河流域民勤绿洲生态需水与生态建设[J].地球科学进展, 27(7): 806-814.DOI: 10. 11867/j.issn.1001-8166.2012.07.0806.
[10]高前兆, 仵彦卿, 2004.河西内陆河流域的水循环分析[J].水科学进展, 15(3): 391-396.DOI: 10.3321/j.issn: 1001-6791. 2004.03.023.
[11]高子毅, 张建新, 廖飞佳, 等, 2005.新疆天山山区人工增雨试验效果评价[J].高原气象, 24(5): 734-740.
[12]郭学良, 方春刚, 卢广献,等, 2019.2008-2018年我国人工影响天气技术及应用进展[J].应用气象学报, 30(6): 641-650.DOI: 10.11898/10001-7313.20190601.
[13]韩辉邦, 马明国, 严平, 2011.黑河流域NDVI周期性分析及其与气候因子的关系[J].遥感技术与应用, 26(5): 554-560.DOI: 10.11873/j.issn.1004-0323.2011.5.554.
[14]黄玉霞, 王宝鉴, 张强, 等, 2008.气候变化和人类活动对石羊河流域水资影响评价[J].高原气象, 27(4): 866-872.
[15]洪延超, 雷恒池, 2012.云降水物理和人工影响天气研究进展和思考[J].气候与环境研究, 17(6): 951-967.DOI: 10.3878/j.issn.1006-9585.2012.06.32.
[16]候启, 张勃, 何航, 等, 2020.气候变化对甘肃河西地区干热风特征的影响[J].高原气象, 39(1): 162-171.DOI: 10.7522/j.issn. 1000-0534.2019.00063.
[17]康尔泗, 程国栋, 蓝永超, 等, 2002.概念性水文模型在出山径流预报中的应用[J].地球科学进展, 17(1): 18-26.DOI: 10.3321/j.issn: 1001-8166.2002.01.004.
[18]蓝欣, 郑娇玉, 江帆, 等, 2015.石羊河流域下游植被覆盖变化与地下水和气候的响应分析[J].兰州大学学报(自然科学版), 51(6): 865-870.DOI: 10.13885/j.issn.0455-2059.2015.06.018.
[19]雷恒池, 洪延超, 赵震, 等, 2008.近年来云降水物理和人工影响天气研究进展[J].大气科学, 32(4): 967-974.DOI: 10.3878/j.issn.1006-9585.2012.06.32.
[20]李斌, 郑博华, 兰文杰, 等, 2018.克拉玛依市冬季飞机人工增雪作业效果统计分析[J].干旱区地理, 41(4): 686-692.DOI: 10. 12118/j.issn.1000-6060.2018.04.02.
[21]李宏宇, 嵇磊, 周嵬, 等, 2014.北京地区人工增雨效果和防雹经济效益评估[J].高原气象, 33(4): 1119-1130.DOI: 10.7522/j.issn.1000-0534.2013.00027.
[22]李丽丽, 王大为, 韩涛, 2018.2000-2015年石羊河流域植被覆盖度及其对气候变化的响应[J].中国沙漠, 38(5): 1108-1118.DOI: 10.7522/j.issn.1000- 694X.2017.00061.
[23]钱莉, 俞亚勋, 杨永龙, 2007.河西走廊东部人工增雨试验效果评估[J].干旱区研究, 24(5): 679-685.DOI: 10.13866/j.azr. 2007.05.006.
[24]孙玉稳, 董晓波, 李宝东, 等, 2019.太行山东麓一次低槽冷锋降水云系云物理结构和作业条件的飞机观测研究[J].高原气象, 38(5): 971-982.DOI: 10.7522/j.issn.1000-0534.2018.00112.
[25]王春林, 司建华, 赵春彦, 等, 2019.河西走廊近57年来干旱灾害特征时空演化分析[J].高原气象, 38(1): 196-205.DOI: 10. 7522/j.issn.1000-0534.2018.00081.
[26]王黎俊, 银燕, 郭三刚, 等, 2012.基于气候变化背景下的人工防雹效果统计检验: 以青海省东部农业区为例[J].大气科学学报, 35(5): 524-532.DOI: 10.3969/j.issn.1674-7097.2012.05.002.
[27]王晶, 王旭峰, 2019.2000-2016年石羊河北部植被覆盖度动态变化特征[J].地理空间信息, 17(8): 46-49.DOI: 10.3969/j.issn. 1672-4623.2019.08.013.
[28]王静, 尉元明, 郭铌, 等, 2007.祁连山空中云水资源开发利用效益预测与评估[J].自然资源学报, 22(3): 463-470.DOI: 10. 3321/j.issn: 1000-3037.2007.03.016.
[29]王婷婷, 冯起, 郭小燕,等, 2019.1959-2014年古浪河流域降水变化特征及突变分析[J].高原气象, 38(6): 1251-1262.DOI: 10.7522/j.issn.1000-0534.2019.00068.
[30]王婉, 姚展予, 2009a.2006年北京市人工增雨作业效果统计分析[J].高原气象, 28(1): 195-202.
[31]王婉, 姚展予, 2009b.人工增雨统计检验结果准确度分析[J].气象科技, 37(2): 209-215.DOI: 10.3969/j.issn.1671-6345. 2009.02.018.
[32]王以琳, 李德生, 刘诗军, 2012.飞机人工增雨分层历史回归效果检验方法探讨[J].气候与环境研究, 17(6): 862-870.DOI: 10.3878/j.issn.1006-9585.2012.06.23.
[33]姚展予, 2006.中国气象科学研究院人工影响天气研究进展回顾[J].应用气象学报, 17(6): 786-795.DOI: 10.11898/1001-7313.20060616.
[34]尹宪志, 徐启运, 张丰伟, 等, 2015.近10年甘肃春季飞机人工增雨经济效益评估[J].江西农业学报, 27(11): 64-72.DOI: 10. 3969/j.issn.1001-8581.2015.11.016.
[35]曾光平, 方仕珍, 肖锋, 1991.1975-1986年古田水库人工降雨效果总分析[J].大气科学, 15(4): 97-108.DOI: 10.3878/j.issn. 1006-9895.1991.04.11.
[36]张良, 王式功, 尚可政, 等, 2006.中国人工增雨研究进展[J].干旱气象, 24(4): 73-81.DOI: 10.3969/j.issn.1006-7639.2006. 04.014.
[37]翟晴飞, 敖雪, 袁健, 等, 2017.基于区域历史回归法的辽宁地区一次人工增雨作业效果检验[J].气象与环境学报, 33(6): 96-104.DOI: 10.3969 /j.issn.1673-503X.2017.06.013.