Correction of FY-4A Surface Solar Irradiance based on Probability Density Function Matching Method

  • Lina XU ,
  • Yanbo SHEN ,
  • Zhong LI ,
  • Hu YE
Expand
  • <sup>1.</sup>Inner Mongolia Service Center of Meteorology,Hohhot 010051,Inner Mongolia,China;<sup>2.</sup>Public Meteorological Service Center of China Meteorological Administration,Beijing 100081,China;<sup>3.</sup>Wind and Solar Energy Resources Center of China Meteorological Administration,Beijing 100081,China

Received date: 2020-07-10

  Online published: 2021-08-28

Abstract

Fengyun-4A(FY-4A) satellite is the second generation of geostationary meteorological satellite for quantitative applications independently developed by China.FY-4A supports nowcasting and severe weather warning, regional and global numerical weather production(NWP), climate application, environment and disaster monitoring and so on.The new generation of FY-4A geostationary meteorological satellite provides high spatial and temporal resolution earth observations of geosynchronous orbit in China.The hundreds of quantitative products include cloud and atmospheric products, surface products, weather products, radiation products and so on, which play a very important role in weather forecast and climate prediction.In this study, ground-based radiation observations are adopted as the benchmark to evaluate accuracy and radiation detection capability of FY-4A in Inner Mongolia.Basing on the result of evaluation, the probability density function matching method (PDF) is employed to established the correction model of FY-4A surface solar irradiance.Results show that: (1) The correlation coefficients show the obvious regularity not only on the spatial distribution but also on the seasonal distribution, that in winter are significantly lower than that in the other seasons and that in the east are higher than that in the west.In addition, FY-4A overestimates the radiation of in the lower value range and underestimates that of in the higher value range.The feature of non-independent systematic errors are obvious.(2) Aiming to adjust the systematic bias of the high resolution satellite-based surface solar irradiance (SSI) estimations over Inner Mongolia, The probability density function matching method is applied to adjust the satellite retrievals through matching their probability density function against that based on situ observations.One advantage of this technique is that it is capable of correcting retrieval errors that are range dependent.The PDF model established on a quarterly basis can reflect the characteristics of stable probability density distribution between ground-based observations and FY-4A, the accuracy and radiation detection capability of FY-4A are effectively improved.(3) By comparing the results of test, it can be concluded that after correction by the PDF model, the systematic errors are effectively reduced, the distribution characteristics are closely to the original errors, and the improvement of FY-4A surface solar irradiance in cloudy days is significant.The correlation coefficients improve from 0.37~0.91 to 0.83~0.96, the mean absolute errors decrease from 5.2~404.9 W·m-2 to 5.3~139.1 W·m-2 and the mean errors decrease from -150.7~305.2 W·m-2 to -98.2~78.9 W·m-2.So the study demonstrates that the PDF technique is effective way in correcting systematic bias of FY-4A SSI product.

Cite this article

Lina XU , Yanbo SHEN , Zhong LI , Hu YE . Correction of FY-4A Surface Solar Irradiance based on Probability Density Function Matching Method[J]. Plateau Meteorology, 2021 , 40(4) : 932 -942 . DOI: 10.7522/j.issn.1000-0534.2020.00080

References

[1]Prasad A A, Kay M, 2020.Assessment of simulated solar irradiance on days of high intermittency using WRF-Solar [J].Energies, 13(2): 385.
[2]Sharifi E, Steinacker R, Saghafian B, 2018.Multi time-scale evaluation of high-resolution satellite-based precipitation roducts over northeast of Austria[J].Atmospheric Research, 206: 46-63.DOI: 10.1016/j.atmosres.2018.02.020.
[3]Tang W J, Yang K, He J, al et, 2010.Quality control and estimation of global solar radiation in China [J].Solar Energy, 84(3): 466-475.
[4]Turk F J, Ebert E E, Oh H J, al et, 2003.Validation of an operational global precipitation analysis at short time scales[C]//12 th Conf on Satellite Meteorology and Oceangraphy, American Meteorological Society.
[5]Wang W Q, Xie P P, 2007.A multiplatform-merged(MPM) SST analysis[J].Journal of Climate, 20(9): 1662-1679.
[6]鲍艳松, 殷佳研, 陆其峰, 等, 2015.FY-3A MWHS资料偏差订正方法研究[J].热带气象学报, 31(6): 757-765.
[7]常蕊, 申彦波, 郭鹏, 2017.太阳能资源典型年挑选方法的适用性对比研究[J].高原气象, 36(6): 1713-1721.DOI: 10.7522/j.issn.1000-0534.2017.00013.
[8]崔林丽, 郭巍, 葛伟强, 等, 2020.FY-4A卫星云顶参数精度检验及台风应用研究[J].高原气象, 39(1): 196-203.DOI: 10.7522/j.issn.1000-0534.2019.00065.
[9]耿晓雯, 闵锦忠, 杨春, 等, 2020.FY-4A AGRI辐射率资料偏差特征分析及订正试验[J].大气科学, 44(4): 679-694.
[10]国家市场监督管理总局, 中国国家标准化管理委员会, 2019.太阳能资源评估方法()[S].北京: 中国标准出版社, 1-18.
[11]何晓凤, 周荣卫, 申彦波, 等, 2015.基于WRF模式的太阳辐射预报初步试验研究[J].高原气象, 34(2): 463-469.DOI: 10. 7522/j.issn.1000-0534.2013.00167.
[12]胡菊, 唐世浩, 刘海磊, 等, 2017.FY-3C VIRR大气可降水产品生成和检验[J].遥感学报, 21(6): 842-852.
[13]黄守友, 徐国强, 2020.FY-4A 的LMIE闪电数据对云信息初始化的影响及数值试验[J].高原气象, 39(2): 378-392.DOI: 10. 7522/j.issn.1000-0534.2019.00110.
[14]姬兴杰, 贾志军, 肖国杰, 2017.近60 年郑州市地面太阳辐射变化的影响因素分析[J].太阳能学报, 38(5): 1211-1229.
[15]梁进秋, 申彦波, 胡丽琴, 等, 2020.FY-4A地表太阳入射辐射产品在山西高原的适用性研究[J].气象, 46(12): 1575-1584.DOI: 10.7519/j.issn.1000-0526.2020.12.005.
[16]梁玉莲, 申彦波, 白龙, 等, 2017.华南地区太阳能资源评估与开发潜力[J].应用气象学报, 28(4): 481-490.
[17]廖荣伟, 张冬斌, 沈艳, 2015.6种卫星降水产品在中国区域的精度特征评估[J].气象, 41(8): 970-979.DOI: 10.7519/j.issn. 1000-0526.2015.08.006.
[18]卢燕宇, 田红, 鲁俊, 等, 2016.近50年安徽省太阳总辐射的时空变化特征[J].气象科技, 44(5): 769-775.
[19]吕赫, 2017.北方荒漠区太阳能热发电环境效应分析[D].呼和浩特: 内蒙古大学, 1-39.
[20]马润, 胡斯勒图, 尚华哲, 等, 2019.基于葵花-8卫星大气产品的地表下行短波辐射计算[J].遥感学报, 23(5): 924-934.
[21]马玉峰, 李喜仓, 宋进华, 等, 2013.内蒙古自治区太阳总辐射的气候学计算及其时空分布特征[J].气象与环境学报, 29(6): 102-109.
[22]钱磊, 邱学兴, 郑淋淋, 2019.基于概率密度匹配方法的WRF模式阵风风速误差订正[J].气象科技, 47(6): 916-926.
[23]申彦波, 常蕊, 杜江, 等, 2015.吐鲁番地区可利用太阳能资源分析[J].高原气象, 34(2): 470-477.DOI: 10.7522/j.issn.1000-0534.2014.00003.
[24]申彦波, 赵东, 祝昌汉, 等, 2009.近50年鄂尔多斯地面太阳辐射的变化及与相关气象要素的联系[J].高原气象, 28(4): 786-794.
[25]沈镭, 刘立涛, 高天明, 等, 2012.中国能源资源的数量、 流动与功能分区[J].资源科学, 34(9): 1611-1621.
[26]孙朋杰, 陈正洪, 成驰, 等, 2015.一种改进的太阳辐射MOS预报模型研究[J].太阳能学报, 36(12): 3048-3053.
[27]孙治安, 刘晶淼, 曾宪宁, 等, 2014.晴天地表总辐射和净辐射瞬时值计算方法[J].气象与环境学报, 30(2): 1-13.
[28]王峥, 任毅, 2010.我国太阳能资源的利用现状与产业发展[J].资源与产业, 12(2): 89-92.
[29]吴喜之, 2008.统计学: 从概念到数据分析[M].北京: 高等教学出版社, 1-196.
[30]尹延通, 刘高飞, 关吉平, 等, 2017.基于探空和SSMI/S资料的AM-SR-2海上大气可降水产品检验与评估[J].海洋科学, 41(4): 65-74.
[31]俞琳飞, 张永强, 张佳华, 等, 2020.卫星降水产品在太行山区的适用性初步评估[J].高原气象, 39(4): 819-829.DOI: 10.7522/j.issn.1000-0534.2020.00007.
[32]宇婧婧, 沈艳, 潘旸, 等, 2013.概率密度匹配法对中国区域卫星降水资料的改进[J].应用气象学报, 24(5): 544-553.
[33]中国气象局, 2011.气象卫星定量产品质量评价指标和评估报告要求()[S].北京: 气象出版社, 1-6.
[34]周黛怡, 杨洪海, 秦榕, 等, 2018.基于地面观测与GEWEX-SRB卫星反演新疆维吾尔自治区地面太阳辐射研究[J].气象与环境学报, 34(4): 84-91.
Outlines

/