Characteristics of the Raindrop Size Distribution during a Short-time Heavy Rainfall and a Squall Line Accompanied by Hail

  • Jun WANG ,
  • Wenqing WANG ,
  • Hong WANG ,
  • Qiuchen ZHANG ,
  • Dianli GONG
Expand
  • <sup>1.</sup>Key Laboratory for Meteorological Disaster Prevention and Mitigation of Shandong,Jinan 250031,Shandong,China;<sup>2.</sup>Shandong Weather Modification Office,Jinan 250031,Shandong,China

Received date: 2020-06-12

  Online published: 2021-10-28

Abstract

To better understand the differences of rain drop size distribution (DSD) and its integral parameters, such as intercept parameter, volume weight diameter, rain intensity and radar reflectivity factor, between warm rainfall and cold rainfall processes, the characteristics of rain DSD during a heavy rainfall and a squall line accompanied by hail (rain intensity higher than 10 mm·h-1) are analyzed based on data observed by Parsivel disdrometers and CINRADA/SA Doppler radars.The results are shown as follows.(1) The DSD of the convective type in heavy rainfall includes single-peak spectrum (peak diameter between 0.2 and 0.3 mm), double peak spectrum (peak diameter being 0.9 or 2.0 mm) and multi-peak spectrum (the second and third peaks appear simultaneously when particle diameter is 1.0 mm and 2.0 mm), indicating that the coalescence and collision-breakup of raindrops in warm rainfall are dominant processes.The intercept parameter and the mean mass-weighted diameter (lgNw-Dm) of the normalized Gamma function show the continental convective characteristics of rain DSD during the heavy rainfall.The Z-R relationship is close to that of the new generation Doppler radar.Although the heavy rain is fully developed in the high-altitude cold rainfall processes, the collision-coalescence and breakup in the warm rainfall have enough time to operate owing to the high position of 0 ℃, and the equilibrium DSD appears.(2) The DSD of the convective precipitation accompanied by hail is mainly single-peak spectrum (peak diameter between 0.2 and 0.7mm), lacks the second peak with larger diameter, has more small and large diameter particles, and the curve of DSD larger than the peak diameter is a concave upward.The distribution of lgNw-Dm shows a larger Dm compared with the DSD of continental convective precipitation, while the Z-R relationship has a larger index and coefficient, deviating from that of the new generation Doppler radar.The differences between cold rainfall and warm rainfall processes lead to the obvious differences between ground DSD and integral parameters.In the precipitation process accompanied by hail, ice particles such as graupel and hail constantly melt and breakup in the falling process, leading to the large number of small and large raindrop on the ground.Therefore, the differences in microphysical processes bring about different characteristics of DSD.(3) When different order moments are used to calculate the exponential bn, it is necessary to make a reasonable choice according to the characteristics of DSD.The difference of number density between large, medium and small particles will lead to the great difference of the variation of different order moments with rain intensity.The analysis of a scaling law formalism shows that the general distribution function gx) for the DSD of the heavy rainfall can be exponential function or Gamma function with shape factor less than 1.0, while the general distribution function gx) for the DSD of the convective precipitation accompanied by hail is more suitable for Gamma function with shape factor less than 0.

Cite this article

Jun WANG , Wenqing WANG , Hong WANG , Qiuchen ZHANG , Dianli GONG . Characteristics of the Raindrop Size Distribution during a Short-time Heavy Rainfall and a Squall Line Accompanied by Hail[J]. Plateau Meteorology, 2021 , 40(5) : 1071 -1086 . DOI: 10.7522/j.issn.1000-0534.2020.00091

References

[1]Bennet J A, Fang D J, Boston R C, 1984.The relationship between N0 and Λfor Marshall-Palmer type raindrop-size distributions[J].Journal of Applied Meteorology and Climatology, 23(5); 768-771.DOI: org/10.1175/1520-0450(1984)023<0768: TRBAFM>2.0.CO; 2.
[2]Bringi V N, Chandrasekar V, Hubbert J, al et, 2003.Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis[J].Journal of the Atmospheric Sciences, 60(2): 354-365.DOI: org/10.1175/1520-0469(2003)060<0354: RSDIDC>2.0.CO; 2.
[3]Bringi V N, Williams C R, Thurai M, al et, 2009.Using dual-polarized radar and dual-frequency profiler for DSD characterization: a case study from Darwin, Australia[J].Journal of Atmospheric and Oceanic Technology, 26(10): 2107-2122.DOI: org/10.1175/2009JTECHA1258.1.
[4]D'Adderio LP, Porcù F, Tokay A, 2015.Identification and analysis of collisional break-up in natural rain[J].Journal of the Atmospheric Sciences, 72(9): 3404-3416.DOI: org/10.1175/JAS-D-14-0304.1.
[5]D'Adderio LP, Porcù F, Tokay A, 2018.Evolution of drop size distribution in natural rain[J].Atmospheric Research, 200(200): 70-76.DOI: org/10.1016/j.atmosres.2017.10.003.
[6]Dolan B, Fuchs B, Rutledge S A, al et, 2018.Primary Modes of Global Drop Size Distributions[J].Journal of the Atmospheric Sciences, 75(5): 1453-1476.DOI: org/10.1175/JAS-D-17-0242.1.
[7]Friedrich K, Kalina E A, Masters F J, al et, 2013a.Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2[J].Monthly Weather Review, 141(4): 1182-1203.DOI: org/10.1175/MWR-D-12-00116.1.
[8]Friedrich K, Stephanie H, Masters F J, al et, 2013b.Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall[J].Journal of Atmospheric and Oceanic Technology, 30(9): 2063-2080.DOI: org/10. 1175/JTECH-D-12-00254.1.
[9]Fulton R A, Breidenbach J P, Seo D J, al et, 1998.The WSR-88D rainfall algorithm[J].Weather and Forecasting, 13(2): 377-395.DOI: org/10.1175/1520-0434(1998)013<0377: TWRA>2.0.CO; 2.
[10]Gatlin P N, Thurai M, Bringi V N, al et, 2015.Searching for large raindrops: A global summary of Two-Dimensional Video Disdrometer observations[J].Journal of Applied Meteorology and Climatology, 54(5): 1069-1089.DOI: org/10.1175/JAMC-D-14-0089.1.
[11]Hu Z, Srivastava R C, 1995.Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observation[J].Journal of the Atmospheric Sciences, 52(10): 1761-1783.DOI: org/10.1175/1520-0469(1995)052<1761: EORSDB>2.0.CO; 2.
[12]Jaffrain J, Berne A, 2011.Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers[J].Journal of Hydrometeorology, 12(3): 352-370.DOI: org/10.1175/2010JHM1244.1.
[13]Joss J, Gori E G, 1978.Shapes of raindrop size distributions[J].Journal of Applied Meteorology and Climatology, 17(7): 1054-1061.DOI: org/10.1175/1520-0450(1978)017<1054: SORSD>2.0.CO; 2
[14]L?ffler-Mang M, Joss J, 2000.An optical disdrometer for measuring size and velocity of hydrometeors[J].Journal of Atmospheric and Oceanic Technology, 17(2): 130-139.DOI: org/10.1175/1520-0426(2000)017<0130: AODFMS>2.0.CO; 2.
[15]Low T B, List R, 1982a.Collision, coalescence, and breakup of raindrops.Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup[J].Journal of the Atmospheric Sciences, 39(7): 1591-1606.DOI: org/10.1175/1520-0469(1982)039<1591: CCABOR>2.0.CO; 2.
[16]Low T B, List R, 1982b.Collision, coalescence, and breakup of raindrops.Part II: Parameterization of fragment size distributions[J].Journal of the Atmospheric Sciences, 39(7): 1607-1619.DOI: org/10.1175/1520-0469(1982)039<1607: CCABOR>2.0.CO; 2.
[17]Marshall J S, Palmer W M, 1948.The distribution of raindrops with size[J].Journal of Meteorology, 5(4): 165-166.DOI: org/10. 1175/1520-0469(1948)005<0165: TDORWS>2.0.CO; 2.
[18]McFarquhar G M, 2004.A new representation of collision-induced breakup of raindrops and its implications for the shapes of raindrop size distributions[J].Journal of the Atmospheric Sciences, 61(7): 777-794.DOI: org/10.1175/1520-0469(2004)061<0777: ANROCB>2.0.CO; 2.
[19]Porcù F, D’Adderio L P, Prodi F, al et, 2014.Rain drop size distribution over the Tibetan Plateau[J].Atmospheric Research, 150(150): 1-30.DOI: 10.1016/j.atmosres.2014.07.005.
[20]Porcù F, D'Adderio LP, Prodi F, al et, 2013.Effects of altitude on maximum raindrop size and fall velocity as limited by collisional breakup[J].Journal of the Atmospheric Sciences, 70(4): 1129-1134.DOI: org/10.1175/JAS-D-12-0100.1.
[21]Prat O P, Barros A P, Testik F Y, 2012.On the Influence of Raindrop Collision Outcomes on Equilibrium Drop Size Distributions[J].Journal of the Atmospheric Sciences, 69 (5): 1534-1546.DOI: org/10.1175/JAS-D-11-0192.1.
[22]Rosenfeld D, Ulbrich C W, 2003.Cloud microphysical properties, processes, and rainfall estimation opportunities[C].Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteorological Monographs, American Meteor Society, No.52, 237-258.
[23]Ryzhkov A V, Kumjian M R, Ganson S M, al et, 2013.Polarimetric radar characteristics of melting hail.Part I: Theoretical simulations using spectral microphysical modeling[J].Journal of Applied Meteorology and Climatology, 52(12): 2849-2870.DOI: org/10.1175/JAMC-D-13-074.1.
[24]Sauvageot H, Koffi M, 2000.Multimodal raindrop size distributions[J].Journal of the Atmospheric Sciences, 57(15): 2480-2492.DOI: org/10.1175/1520-0469(2000)057<2480: MRSD>2.0.CO; 2.
[25]Sekhon R S, Srivastava R C, 1971.Doppler radar observations of drop-size distributions in a thunderstorm[J].Journal of the Atmospheric Sciences, 28(6): 983-994.DOI: org/10.1175/1520-0469(1971)028<0983: DROODS>2.0.CO; 2.
[26]Sempere T, Porra` D J, Creutin J D, 1994.A general formulation for raindrop size distribution[J].Journal of Applied Meteorology and Climatology, 33(12): 1494-1502.DOI: org/10.1175/1520-0450(1994)033<1494: AGFFRS>2.0.CO; 2.
[27]Sempere T, Porra` D J, Creutin J D, 1998.Experimental evidence of a general description of raindrop size distribution properties[J].Journal of Geophysical Research: Atmospheres, 103(D2): 1785-1797.DOI: org/10.1029/97JD02065.
[28]Straub W, Behenga K, Seifert A, al et, 2010.Numerical investigation of collision-induced breakup of raindrops.Part II: Parameterizations of coalescence efficiencies and fragment size distributions[J].Journal of the Atmospheric Sciences, 67(3): 576-588.DOI: org/10.1175/2009JAS3175.1.
[29]Testud J S, Oury R A, Black P, al et, 2001.The concept of "normalized" distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing[J].Journal of Applied Meteorology, 40: 1118-1140.DOI: 10.1175/1520-0450(2001)040<1118: tcondt>2.0.co; 2.
[30]Thurai M, Bringi V N, May P T, 2010.CPOL radar-derived drop size distribution statistics of stratiform and convective rain for two regimes in Darwin, Australia[J].Journal of Atmospheric and Oceanic Technology, 27(5): 932-942.DOI: org/10.1175/2010JTECHA1349.1.
[31]Uijlenhoet R, Smith J A, Steiner M, 2003.The microphysical structure of extreme precipitation as inferred from ground-based raindrop spectra[J].Journal of the Atmospheric Sciences, 60(10): 1220-1238.DOI: org/10.1175/1520-0469(2003)60<1220: TMSOEP>2.0.CO; 2.
[32]Ulbrich C W, Atlas D, 1998.Rainfall microphysics and radar properties: analysis methods for drop size spectra[J].Journal of Applied Meteorology and Climatology, 37(9): 912-923. DOI: org/10.1175/1520-0450(1998)037<0912: RMARPA>2.0.CO; 2.
[33]Ulbrich C W, 1983.Natural Variations in the Analytical Form of the Raindrop Size Distribution.Journal of Applied Meteorology and Climatology, 22(10): 1764-1775.DOI: org/10.1175/1520-0450(1983)022<1764: NVITAF>2.0.CO; 2.
[34]Willis P T, 1984.Functional fits to some observed drop size dis tributions and parameterization of rain[J].Journal of the Atmospheric Sciences, 41(9): 1648-1661.DOI: org/10.1175/1520-0469(1984)041<1648: FFTSOD>2.0.CO; 2.
[35]Zawadzki I, Antonio M D A, 1988.Equilibrium raindrop size distributions in tropical rain[J].Journal of the Atmospheric Sciences, 45 (22): 3452-3459.doi.org/10.1175/1520-0469(1988)045<3452: ERSDIT>2.0.CO; 2.
[36]房彬, 郭学良, 肖辉, 2016.辽宁地区不同降水云系雨滴谱参数及其特征量研究[J].大气科学, 40 (6): 1154-1164.DOI: 10. 3878/j.issn.1006-9895.1512.15244.
[37]高建秋, 阮征, 游积平, 等, 2015.广东东莞不同类型云的雨滴谱和降水特征[J].气象科技, 43(6): 1085-1094.DOI: 10.19517/j.1671-6345.2015.06.013
[38]黄兴友, 印佳楠, 马雷, 等, 2019.南京地区雨滴谱参数的详细统计分析及其在天气雷达探测中的应用[J].大气科学, 43(3): 691-704.DOI: 10.3878/j.issn.10069895.1805.18113
[39]蒋强, 卞建春, 李艳, 2020.雨滴下落过程模型雏形的建立[J].高原气象, 39(3): 609-619.DOI: 10.7522/j.issn.1000-0534.2020.00004.
[40]李景鑫, 牛生杰, 王武功, 等, 2010.积层混合云降水雨滴谱特征分析[J].兰州大学学报, 46(6): 56-61.DOI: 10.13885/j.issn.0455-2059.2010.03.014.
[41]刘胜男, 王改利, 2020.DSD参数对双频雷达估测降水的影响研究[J].高原气象, 39(3): 570-580.DOI: 10.7522/j.issn.1000-0534.2019.00093.
[42]王俊, 姚展予, 侯淑梅, 等, 2016.一次飑线过程的雨滴谱特征研究[J].气象学报, 74(3): 450-464.DOI: 10.11676/qxxb2016.034.
[43]岳治国, 梁谷, 2018.陕西渭北一次降雹过程的粒子谱特征分析[J].高原气象, 37(6): 1716-1724.DOI: 10.7522/j.issn. 1000-0534.2018.00023.
[44]张国庆, 孙安平, 周万福, 等, 2009.青海门源雨滴谱特征及降水机制的初步研究[J].高原气象, 28(1): 77-84.
Outlines

/