Based on China Meteorological Administration (CMA) typhoon path data, surface-observed hourly data, NCEP/NCAR (1°×1°) re-analysis data, black-body temperature equivalent (TBB) of FY-2F satellite data, radar data, and conventional observation data, the reason for the distribution characteristics of the asymmetry of the later two stages of northward-moving typhoon Ampil (1810) was analyzed.The intensity of the typhoon remained unchanged when Ampil went northward, but it caused the Shandong torrential rain to locate on the east side of the typhoon track, while the Tianjin torrential rain located on the west side of the track.The result indicated that after Typhoon Ampil went northward, the cloud system around it developed into an asymmetrically distributed cloud system, with obvious asymmetry in the structure of rainfall and circulation.In the two heavy-rainfall areas that located in Shandong and Tianjin, the enhanced development of rainfall was consistent with the development characteristics of convective cloud clusters.Short-term heavy-rainfall sites with low centroids were distributed in the high-value area of the TBB gradient.When the typhoon was in Shandong, mesoscale cloud clusters and heavy rainfall mainly located in the central of Shandong, east of the typhoon path, because weak vertical wind shear was conducive to maintaining the heart-warming structure and strength of the typhoon.The high-temperature and humidity environment carried by the typhoon itself caused the conditional symmetry and instability of the lower troposphere, and triggered short-term heavy rainfall on the east side of the typhoon.The center of heavy rain was affected by the combined effects of positive vorticity, vertical velocity, water-vapor convergence, and topography of Mount Tai.After the typhoon entered Tianjin, cold air infiltrated from the westerly trough, infiltrating the typhoon circulation from the northwest side, causing the intersection of cold and warm air.This additionally inspired an asymmetric mesoscale system, leading to vertical wind shear and positive vorticity increasing significantly, resulting in high-level divergence and low-level convergence, causing obvious suction.Together, these events caused strong upward movement on the west side of the typhoon and the thickness of unstable stratification increased significantly, providing favorable conditions for the development of mesoscale systems.At the same time, the southeast jet in the lower troposphere caused water vapor to be replenished after passing through the Bohai Sea, forming an obvious belt-shaped water-vapor convergence zone on the northwest side of the typhoon.This convergence zone led to the band-shaped mesoscale cloud cluster of cyclonic circulation that developed in the northwestern side of the typhoon cloud system at the junction of Beijing and Tianjin.Together, these events led to short-term (5-h duration) heavy rainfall on the northwest side of the typhoon.
Hong CHEN
,
Xiaojun YANG
,
Xiaoyuan YI
,
Yinghua WEI
,
Yang YANG
,
Qing ZHANG
,
Jing SUN
. Analysis of Difference in Distribution of Rainstorms in the Later Two Stages of Northward-Moving Typhoon Ampil[J]. Plateau Meteorology, 2021
, 40(5)
: 1087
-1100
.
DOI: 10.7522/j.issn.1000-0534.2020.00088
[1]Atallah E H, Bosart L F, Aiyyer A, 2007.Precipitation distribution associated with landfalling tropical cyclones over the eastern United States [J].Monthly Weather Review, 135(6): 2185-2206.
[2]Anthes R A, 1990.The metamorphosis of Hurricane Hazel revisited[C]//Newtons C, Holopainen E O.Extratropical Cyclones: The Erik Pamen Memorial Volume.American Meteorological Society, 240-249.
[3]Browning K A, 1997.The dry intrusion perspective of extra-tropical cyclone development[J].Meteorology Apply, 4(4): 317-324.
[4]Chen S S, Knaff J A, Marks F D, 2006.Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM [J].Monthly Weather Review, 134(11): 3190-3208.
[5]Wu C C, Yen T H, Kuo Y H, al et, 2002.Rainfall simulation associated with typhoon Herb (1996) near Taiwan.Part I: The topographic effect [J].Weather Forecasting, 17(5): 1001-1015.
[6]陈联寿, 丁一汇, 1979.西太平洋台风概论[M].北京: 科学出版社: 281-283
[7]陈宏, 杨晓君, 尉英华, 等, 2020.干冷空气入侵台风“海棠”残余低压引发的华北地区大暴雨分析[J].暴雨灾害, 39(3): 241-249.DOI: 10.3969/j.issn.1004-9045.2020.03.004.
[8]程正泉, 陈联寿, 徐祥德, 等, 2005.近10年中国台风暴雨研究进展[J].气象, 31(12): 3-9.DOI: 10.7519/j.issn.1000-0526. 2005.12.001.
[9]崔晓鹏, 2009.地面降雨诊断方程对降雨过程的定量诊断[J].大气科学, 33(2): 375-387.DOI: 10.3878/j.issn.1006-9895.2009. 02.15.
[10]丁治英, 陈久康, 1995.台风暴雨与环境水汽场的数值试验[J].南京气象学院学报, 18(1): 33-38.
[11]端义宏, 陈联寿, 梁建茵, 等, 2014.台风登陆前后异常变化的研究进展[J].气象学报, 72(5): 969-986.DOI: 10.11676/qxxb2014.085.
[12]李英, 陈联寿, 雷小途, 2005.Winnie(1997)和Bilis(2000)变性过程的湿位涡分析[J].热带气象学报, 21(2): 142-152.DOI: 10. 3969/j.issn.1004-4965.2005.02.004.
[13]李瑞, 吕淑琳, 周春珍, 等, 2011.环境风垂直切变对0908号台风“莫拉克”影响的分析[J].海洋科学进展, 29(3): 307-313.
[14]梁军, 李英, 张胜军, 等, 2014.辽东半岛热带气旋暴雨的中尺度结构及复杂地形的影响[J].高原气象, 33(4): 1154-1163.DOI: 10.7522/j.issn.1000-0534.2012.00202.
[15]雷小途, 陈联寿, 2001.热带气旋的登陆及其与中纬度环流系统相互作用的研究[J].气象学报, 59(5): 602-615.DOI: 10. 11676/qxxb2001.064.
[16]刘硕, 李得勤, 赛瀚, 等, 2019.台风“狮子山”并入温带气旋过程及引发东北强降水的分析[J].高原气象, 38(4): 804-816.DOI: 10.7522/j.issn.1000-0534.2018.00109.
[17]江吉喜, 项续康, 1997.“96.8”河北特大暴雨成因初探[J].气象, 23(7): 19-23.DOI: 10.7519/j.issn.1000-0526.1997.7.004.
[18]齐铎, 袁美英, 周奕含, 等, 2020.一次东北冷涡过程的结构特征与降水关系分析[J].高原气象, 39(4): 808-818.DOI: 10.7522/j.issn.1000-0534.2019.00078.
[19]任丽, 赵玲, 马国忠, 等, 2018.台风残涡北上引发东北地区北部大暴雨的中尺度特征分析[J].高原气象, 37(6): 1674-1683.DOI: 10.7522/j.issn.1000-0534.2018.00036.
[20]寿绍文, 励申申, 寿亦萱, 等, 2009.中尺度大气动力学[M].北京: 高等教育出版社.
[21]孙力, 董伟, 药明, 等, 2015.1215号“布拉万”台风暴雨及降雨非对称性分布的成因分析[J].气象学报, 73(1): 36-49.DOI: 10. 11676/qxxb2015.004.
[22]孙建华, 张小玲, 卫捷, 等, 2005.20世纪90年代华北大暴雨过程特征的分析研究[J].气候与环境研究, 10(3): 492-506.DOI: 10.3878/j.issn.1006-9585.2005.03.20.
[23]孙建华, 齐琳琳, 赵思雄, 2006.“9608”号台风登陆北上引发北方特大暴雨的中尺度对流系统研究[J].气象学报, 64(1): 57-71.DOI: 10.11676/qxxb2006.006.
[24]陶祖钰, 2011.基础理论与预报实践[J].气象, 37(2): 129-135.DOI: 10.7519/j.issn.1000-0526.2011.2.001.
[25]王承伟, 齐铎, 徐玥, 等, 2017.冷空气入侵台风“灿鸿”引发的东北暴雨分析[J].高原气象, 36(5): 1257-1266.DOI: 10.7522/j.issn.1000-0534.2016.00082.
[26]吴启树, 沈桐立, 苏银兰, 等, 2006.2000年第10号台风的水汽分析与试验[J].气象科学, 26(4): 384-391.
[27]徐明, 余锦华, 赖安伟, 等, 2009.环境风垂直切变与登陆台风强度变化关系的统计分析[J].暴雨灾害, 28(4): 339-344.
[28]徐祥德, 陈联寿, 解以扬, 等, 1998.环境场大尺度锋面系统与变性台风结构特征及其暴雨的形成[J].大气科学, 22(5): 69-77.
[29]杨引明, 朱雪松, 陶祖钰, 2011.上海特大暴雨热带低压结构的数值模拟及其加强机制的分析[J].高原气象, 30(2): 416-427.
[30]岳彩军, 2009.“海棠”台风降雨非对称分布特征成因的定量分析[J].大气科学, 33(1): 53-72.DOI: 10.3878/j.issn.1006-9895.2009.01.05.
[31]赵宇, 李静, 杨成芳, 2016.与台风“海鸥”相关暴雨过程的水汽和干侵入研究[J].高原气象, 35(2): 444-459.DOI: 10.7522/j.issn.1000-0534.2015.00061.
[32]张桂莲, 杭月荷, 付丽娟, 等, 2020.“列车效应”诱发的一次河套地区致灾暴雨成因[J].高原气象, 39(4): 788-795.DOI: 10. 7522/j.issn.1000-0534.2019.00122.
[33]周玲丽, 翟国庆, 王东海, 等, 2011.0713号“韦帕”台风暴雨的中尺度数值研究和非对称性结构分析[J].大气科学, 35(6): 1046-1056.DOI: 10.3878/j.issn.1006-9895.2011.06.05.
[34]朱佩君, 郑永光, 陶祖钰, 2003.发生在中国大陆的台风变性加强过程的分析[J].热带气象学报, 19(2): 157-162.