In order to improve the short-term climate prediction ability of precipitation concentration period and rainfall during the first rainy season in Guangdong Province, the variation characteristics of persistent rainstorm days in recent 59 years, the precursory signals in the atmospheric circulation and SST field in pre-winter, and the physical mechanism were studied by using wavelet analysis, correlation analysis and other methods.The results show that: (1) there were 108 persistent rainstorm processes, and 398 persistent rainstorm days during the first rainy season in Guangdong in recent 59 years.Most of persistent rainstorm processes occurred from May to June, and long-lasting torrential rain reaching or exceeding 10 days mainly occurred in June.The number of persistent rainstorm days exhibited quasi 2-, 7-and 12-year periodic oscillations; (2) The precursory signals in pre-winter over the atmospheric circulation affecting the more(less) number of persistent rainstorm days were stronger ridge (trough) in European (45°N -60°N, 0° -30°E) and stronger trough (ridge) in northwest Asia and mid-Asia (30°N -50°N, 50°E -70°E) and its north at 500 hPa, and the stronger (weaker) southerly in northern SCS (18°N -22°N, 107°E -120°E) at 850 hPa.They affected the number of persistent rainstorm days in the first rainy season by mainly adjusting the strength of the East Asian Trough and the wind over northern SCS in the later stage.(3) The SST in pre-winter in the central North Pacific (15°N -30°N, 170°E -160°W) was the key SST region affecting the number of persistent rainstorm days in the first rainy season in Guangdong Province.They had a good inverse relationship on the periodic scale of 4~8 years and 8~18 years.It affected the number of persistent rainstorm days in the first rainy season in Guangdong Province by influencing the later atmospheric circulation.
Lingling YU
,
Zhongping JI
,
Jianhua MAI
. Variation and Precursory Signals of Persistent Rainstorm during the First Rainy Season in Guangdong Province from 1961 to 2019[J]. Plateau Meteorology, 2021
, 40(5)
: 1115
-1126
.
DOI: 10.7522/j.issn.1000-0534.2020.00108
[1]Kalnay E, Kanamitsu M, Kistler R, al et, 1996.The NCEP/NCAR 40 year reanalysis project[J].Geological Society of America Bulletin, 77: 437-471.
[2]Liu Z, Wu L, 2004. Atmospheric response to North Pacific SST: The role of ocean-atmosphere coupling[J].Journal of Climate, 17(9): 1859-1882.
[3]鲍名, 2007.近50年我国持续性暴雨的统计分析及其大尺度环流背景[J].大气科学, 31(5): 779-792.
[4]陈月娟, 丁明, 1992.太平洋海温异常对其上空环流影响的分析及数值试验[J].大气科学, 16(5): 592-600.
[5]邓立平, 王谦谦, 2002.华南前汛期(4 -6月)降水异常特征及其与我国近海海温的关系[J].热带气象学报, 18(1): 45-55.
[6]丁一汇, 1994.暴雨和中尺度气象学问题[J].气象学报, 52(3): 274-283.
[7]丁硕毅, 温之平, 陈文, 2016.南海夏季风爆发与热带太平洋两类海温型关系的年代际差异[J].大气科学, 40(2): 243-256.
[8]谷德军, 梁建茵, 郑彬, 等, 2008.华南夏季风降水开始日的异常与前冬大气环流和海温的关系[J].大气科学, 32(1): 155-164.
[9]郭大梅, 潘留杰, 史月琴, 等, 2020.西安地区一次罕见秋季冷锋后暴雨过程分析[J].高原气象, 39(5): 986-996.DOI: 10.7522/j.issn.1000-0534.2019.00097.
[10]何光碧, 肖玉华, 师锐, 2019.一次伴有高原低涡和热带气旋活动的持续性暴雨过程分析[J].高原气象, 38(5): 1004-1016.DOI: CNKI: SUN: GYQX.0.2019-05-009.
[11]胡亮, 何金海, 高守亭, 2007.华南持续性暴雨的大尺度降水条件分析[J].南京气象学院学报, 30(3): 345-351.
[12]纪忠萍, 熊亚丽, 谷德军, 等, 2005.广东汛期开始日期的年际和年代际变化研究[J].大气科学, 29(2): 292-300.
[13]纪忠萍, 谷德军, 林爱兰, 2016.东亚夏季风强度的多尺度统计预测模型[J].大气科学, 40(2): 227–242.
[14]李启芬, 吴哲红, 王兴菊, 等, 2020.1981年以来中国夏季降水变化特征及其与SST和前期环流的联系[J].高原气象, 39(1): 58-67.DOI: 10.7522/j.issn.1000-0534.2018.00148.
[15]林学椿, 1991.长期天气过程的隔季相关[J].热带气象学报, 7(4): 348-354.
[16]刘奕辰, 周伟灿, 常煜, 等, 2018.山东半岛东海岸一次台风暴雨的成因研究[J].高原气象, 37(6): 1684-1695.DOI: 10.7522/j.issn.1000-0534.2018.00113.
[17]刘毓赟, 陈文, 2012.北半球冬季欧亚遥相关型的变化特征及其对我国气候的影响[J].大气科学, 36(2): 423-432.
[18]马学款, 符娇兰, 曹殿斌, 2012.海南2008年秋季持续性暴雨过程的物理机制分析[J].气象, 38(7): 795-803.
[19]蒙伟光, 张艳霞, 袁金南, 等, 2014.华南沿海2011年7月15 -18日持续暴雨过程中的季风槽与中尺度对流系统的相互作用[J].气象学报, 72(3): 507-525.
[20]慕建利, 王建捷, 李泽椿, 2008. 2005年6月华南特大连续性暴雨的环境条件和中尺度扰动分析[J].气象学报, 66(3): 437-451.
[21]庞轶舒, 秦宁生, 王春学, 等, 2020.ENSO事件的季节演变对西南夏季降水异常的影响分析[J].高原气象, 39(3): 581-593.DOI: 10.7522/j.issn.10000534.2019.00044.
[22]王晓芳, 徐明, 闵爱荣, 等, 2010. 2010年5月我国南方持续性暴雨过程分析[J].暴雨灾害, 29(2): 193-199.
[23]王华, 李宏宇, 仲跻芹, 等, 2019.京津冀一次罕见的双雨带暴雨过程成因分析[J].高原气象, 38(4): 856-871.DOI: 10.7522/j.issn.1000-0534.2018.00102.
[24]伍红雨, 吴遥, 2018.不同类型和强度的厄尔尼诺事件对次年华南前汛期降水的可能影响[J].大气科学, 42(5): 1081-1095.
[25]谢炯光, 纪忠萍, 2001.广东前汛期异常旱涝的大气环流特征[J].广东气象, (2): 10-12.
[26]谢炯光, 纪忠萍, 谷德军, 等, 2006.广东省前汛期连续暴雨的气候背景及中期环流特征[J].应用气象学报, 17(3): 354-362.
[27]谢炯光, 纪忠萍, 谷德军, 等, 2012.广东省6月长连续暴雨过程的气候特征及成因[J].应用气象学报, 23(2): 174-183.
[28]徐淑爱, 1988.冬季风异常年份的环流特征及其与华南前汛期降水的关系[J].热带气象学报, 4(3): 263-271.
[29]袁佳双, 郑庆林, 2006.西北太平洋冷海温对东亚初夏大气环流影响的数值研究[J].应用气象学报, 17(3): 310-315.
[30]曾琮, 胡斯团, 梁建茵, 等, 2005.东亚冬季风异常与广东前汛期旱涝关系的初步分析[J].应用气象学报, 16(5): 645-654.
[31]张芹, 王洪明, 张秀珍, 等, 2018.2017年山东雨季首场暖区暴雨的特征分析[J].高原气象, 37(6): 1696-1704.DOI: 10.7522/j.issn.1000-0534.2018.00052.
[32]张耀华, 周兵, 张耀存, 2012. 2010年南方持续暴雨期大气环流异常及其低频特征研究[J].气象, 38(11): 1367-1377.
[33]赵永平, 1986.北太平洋中纬海区海-气热量交换对其上空大气环流的影响[J].海洋与湖沼, 17(1): 57-65.
[34]中国科学院大气物理研究所长期天气预报组, 1978.冬季太平洋海水温度异常对我国汛期降水的影响[M].中国科学院大气物理研究所集刊, 6: 1-12.
[35]朱益民, 杨修群, 谢倩, 等, 2008.冬季太平洋海表温度与北半球中纬度大气环流异常的共变模态[J].自然科学进展, 18(2): 161-171.