Using the 2013-2018 hourly meteorological observation data of Shuangliu International Airport's, ECMWF ERA-interim and ERA5 reanalysis data, MICAPS conventional meteorological observation data and airport Doppler weather radar product data, the spatiotemporal characteristics and features in four types of thunderstorm weather at Shuangliu Airport are analyzed.The results show that the 77.03% of thunderstorms at Shuangliu Airport were accompanied by precipitation during 2013 and 2018.The occurrence of thunderstorm in summer (June, July and August) is more than half of that of the whole year, which is featured with "more night thunder and less day thunder".82.7% of the thunderstorms have a duration within 3 hours and the thunderstorms are most active over the east of the airport.The thunderstorms occured at Shuangliu Airport are divided into four types, cold advection forced, warm advection forced, baroclinic frontogenesis and weak advection, according to different baroclinic frontogenesis and thermal conditions of the environmental field.The northwest cold air in the upper level plays a crutial role in the occurrence of cold advection forced thunderstorms.When this type of thunderstorm occurs, Shuangliu Airport is mostly located behind the 500 hPa trough, and the wind rotates counterclockwise with height from the middle to the upper troposphere.The atmosphere exhibited strong unstable energy, thus this type of thunderstorms are often accompanied by thunderstorm gale, hail, and short-time heavy rainfall.The associated radar echo of precipitation shows combined features from cumuliform clouds and stratiform clouds.In contrast, the strong warm and humid southerly is more important in the warm advection forced thunderstorm.Shuangliu Airport is often located in front of the 500 hPa trough and wind tends to rotate clockwise with height in this type of thunderstorm.Although the unstable energy of the atmosphere is relatively weak, the thunderstorm can still induce short-time heavy rainfall as the atmosphere is generally moist.The radar echo of precipitation is mainly featured with the stratiform clouds.Baroclinic frontogenesis type of thunderstorms occur in the background of strong intersection of cold and warm air in the middle and lower troposphere where the function of frontogenesis is significant.The atmospheric baroclinicity is strong and the dynamic condition is good during this thunderstorm.Strong convection occures along with various synoptic processes.The realated radar echo shows a radar bow-shaped echo band near the Shuangliu Airport that is arranged laterally by many thunderstorm cells in the northeast-southwest direction.Weak advection thunderstorms often occur under the weak baroclinic condition.During this thunderstorm, the atmosphere is approximately quasi-barotropic with a small frontogenesis function and the temperature advection is insignificant.The horizontal distribution of atmospheric water vapor is relatively uniform.The air at the near-surface is characterized by high temperature and high humidity, and unstable energy is accumulated at the lower level.Once triggered by somehow mechanisms, the thundershower and gusty winds will be generated after overcoming convective instability.The map of radar echo is shown with many echoes in small range and weak intensity scattering around the Shuangliu Airport and have no obvious typical characteristics.
Diannan LI
,
Dongbei XU
. Analysis of the Characteristics and Synoptic Situation Classifications of Thunderstorms in Shuangliu Airport[J]. Plateau Meteorology, 2021
, 40(5)
: 1164
-1176
.
DOI: 10.7522/j.issn.1000-0534.2020.00110
[1]Cacciamani C, Battaglia F, Patruno P, al et, 1995.A climatological study of thunderstorm activity in the Po Valley[J].Theoretical & Applied Climatology, 50(3-4): 185-203.DOI: 10.1007/BF00866116.
[2]Charles A D, 2001.Severe convective storms——An overview[J].American Meteorological Society, 28(50): 257-308.DOI: 10.1007/978-1-935704-06-5-1.
[3]Rakovec J, 1989.Thunderstorms and hail[J].Theoretical & Applied Climatology, 40(4): 179-186.DOI: 10.1007/BF00865969.
[4]曹洁, 高守亭, 2008.非均匀饱和大气中的广义位温[J].地球物理学报, 51(6): 1651-1656.DOI: 10.3321/j.issn: 0001-5733. 2008.06.004.
[5]陈会芝, 2003.危险天气条件下的航空飞行与安全[D].成都: 西南交通大学.DOI: 10.7666/d.y572519.
[6]成永勤, 2001.弱冷平流对双流机场雷暴的影响[J].四川气象, 21(4): 43-45, 50.DOI: 10.3969/j.issn.1674-2184.2001.04.014.
[7]关象石, 1997.国际和国家防雷技术标准简介[J].中国标准化, 40(12): 34.
[8]何明霞, 崔永, 袁振, 2008.双流机场一次长时间雷暴天气的过程分析[J].民航科技, (4): 109-111.
[9]贾君, 唐秀珍, 2008.双流机场气象观测经验总结[J].民航科技, (4): 114-116.
[10]李春生, 2006.雷暴—航空飞行的天敌[J].空中交通管理, 12(1): 38-39.
[11]李洪勣, 1984.对温度平流计算公式的探讨[J].气象, 34(11): 17-20.DOI: 10.7519/j.issn.1000-0526.1984.11.005.
[12]李桑, 龚道溢, 2015.1980-2010年中国南方雷暴频次的统计特征及其变化[J].高原气象, 34(2): 503-514.DOI: 10.7522/j.issn. 1000-0534.2013.00171.
[13]李毅, 周继业, 2007.双流机场2006年夏季雷暴的多普勒雷达回波特征分析[J].四川气象, 27(S1): 15-18.
[14]李照荣, 康凤琴, 马胜萍, 2005.西北地区雷暴气候特征分析[J].灾害学, 20(2): 83-88.DOI: 10.3969/j.issn.1000-811X. 2005. 02.018.
[15]刘一群, 2019.雷暴天气的航空管制对策探讨[J].中国航班, 65(7): 81-81.
[16]齐铎, 袁美英, 周奕含, 等, 2020.一次东北冷涡过程的结构特征与降水关系分析[J].高原气象, 39(4): 808-818.DOI: 10.7522/j.issn.1000-0534.2019.00078.
[17]冉心, 2001.双流机场雷暴的气候特征分析及预报初探[J].四川气象, 21(4): 27-30, 42.DOI: 10.3969/j.issn.1674-2184. 2001. 04.010.
[18]戎辰, 2016.春秋季节中国东部海上气旋发展机制对比研究[D].南京: 南京信息工程大学.
[19]沈杭锋, 章元直, 查贲, 等, 2015.梅雨锋上边界层中尺度扰动涡旋的个例研究[J].大气科学, 39(5): 1025-1037.DOI: 10.3878/j.issn.1006-9895.1410.14212.
[20]沈宏彬, 陶祖钰, 张义, 2003.成都双流机场一次多雷暴天气的雷达回波分析[J].北京大学学报(自然科学版), 39(1): 58-67.DOI: 10.3321/j.issn: 0479-8023.2003.01.010.
[21]孙继松, 戴建华, 何立富, 等, 2014.强对流天气预报的基本原理与技术方法——中国强对流天气预报手册[M].北京: 气象出版社, 83-93.
[22]王海东, 万寒, 吴正可, 2014.温州地区雷暴日数时空变化研究[J].贵州气象, 38(1): 31-33.DOI: 10.3969/j.issn.1003-6598. 2014. 01.008.
[23]王建东, 2005.浅谈积雨云和雷暴对飞行的影响[J].空中交通管理, 11(3): 50-52.
[24]韦道明, 李崇银, 谭言科, 2011.夏季西太平洋副热带高压南北位置变动特征及其影响[J].气候与环境研究, 16(3): 255-272.DOI: 10.3878/j.issn.1006-9585.2011.03.01.
[25]魏凡, 李超, 2018.利用气象雷达信息划设雷暴飞行限制区的方法研究[J].成都信息工程大学学报, 33(2): 205-211.
[26]魏学军, 姜桓, 王贵明, 等, 2013.雷暴对航空飞行的灾害分析[J].内蒙古气象, 37(4): 42-44.
[27]吴举秀, 周青, 杨传凤, 等, 2017.2015年7月14日阵风锋及锋后大风多普勒天气雷达产品特征分析[J].高原气象, 36(4): 1082-1090.DOI: 10.7522/j.issn.1000-0534.2016.00090.
[28]谢光水, 1990.86424飑线雷达回波特征[J].四川气象, 10(3): 23-27.
[29]徐海, 冉心, 2001.7.24雷暴过程分析[J].四川气象, 21(4): 33-38.DOI: 10.3969/j.issn.1674-2184.2001.04.012.
[30]许爱华, 孙继松, 许东蓓, 等, 2014.中国中东部强对流天气的天气形势分类和基本要素配置特征[J].气象, 40(4): 400-411.DOI: 10.7519/j.issn.1000-0526.2014.04.002.
[31]俞小鼎, 王迎春, 陈明轩, 等, 2005.新一代天气雷达与强对流天气预警[J].高原气象, 24(3): 456-463.
[32]章国材, 2011.强对流天气分析与预报[M].北京: 气象出版社, 11-15.
[33]赵婉露, 冯鑫媛, 王式功, 等, 2020.四川盆地干湿西南涡个例大气环境效应对比研究[J].高原气象, 39(1): 130-142.DOI: 10.7522/j.issn.1000-0534.2019.00052.
[34]周继业, 林梅, 何勇, 2004.双流机场副高西部雷暴起止时间初探[J].四川气象, 24(1): 23-25.DOI: 10.3969/j.issn.1674-2184. 2004.01.008.
[35]朱乾根, 林锦瑞, 寿绍文, 等, 2007.天气学原理和方法(第四版)[M].北京: 气象出版社, 94-103.
[36]竺维, 刘晓达, 2016.双流机场2015年气象预报服务质量分析及探讨[J].民航管理, 31(5): 60-62.