Based on the minute-resolution meteorological elements data observed at 70 automatic weather stations in Jiangsu, the second-resolution sounding data of 3 sounding stations and the fog droplet spectrum data of 21 dense fog events, from January 1, 2013 to December 31, 2018, the spatial and temporal distribution, boundary layer structure and microphysical structure characteristics of the fog at different grades in Jiangsu were analyzed.The results show that in recent years, the number of fog hours in Jiangsu are distributed along the Yangtze River and to the north along the Huaihe River.The average annual fogging time at each station is 318.5 h, the strong dense fog and extremely dense fog were mainly concentrated along the Huaihe River and its north, accounting for 16.4% of the total fog hours.The probability of occurrence of fog in Jiangsu is the highest at 05:50, and the probability of occurrence of fog in winter, spring, summer, and autumn is the highest at 07:10 (Beijing Time, after the same), 05:50, 05:20 and 05:50, respectively.The temperature structure of fog at different grades between 0 m and 1500 m has inversion layer, and with the increase of fog intensity, the inversion intensity increases.And the relative humidity is saturated in the lower layer, but with the increase of fog intensity, the relative humidity of upper layer decreases.With the increase of fog intensity, the number of fog drops of different sizes all increase, and the spectrum of fog drops expands obviously when strong dense fog or extremely dense fog occurs.
Hongbin WANG
,
Zhiwei ZHANG
,
Duanyang LIU
,
Fan ZU
,
Yuying ZHU
,
Hong WU
. Characteristics of the Macro- and Micro-structures of the Different Grades Fog in Jiangsu Province[J]. Plateau Meteorology, 2021
, 40(5)
: 1177
-1188
.
DOI: 10.7522/j.issn.1000-0534.2020.00106
[1]Bendix J, 2002.A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas[J].Atmospheric Research, 64(1): 0-18.
[2]Boutle I, Price J, Kudzotsa I, al et, 2018.Aerosol-fog interaction and the transition to well-mixed radiation fog[J].Atmospheric Chemistry and Physics, 18: 7827-7840.
[3]Cereceda P, Schemenauer R S, 1991.The Occurrence of Fog in Chile[J].Journal of Applied Meteorology, 30(8): 1097-1105.
[4]Gultepe I, Tardif R, Michaelides S C, al et, 2007.Fog Research: A Review of Past Achievements and Future Perspectives[J].Pure and Applied Geophysics, 164(7): 1121-1159.
[5]Hudson J G, 1980.Relationship between fog condensation nuclei and fog microstructure[J] Journal of the Atmospheric Sciences, 37: 1854-1867.
[6]Lee Y H, Lee J S, Park S K, al et, 2010.Temporal and spatial characteristics of fog occurrence over the Korean Peninsula[J].Journal of Geophysical Research Atmospheres, 115(D14): 1-12.
[7]Li Z H, Liu D Y, Yan W L, al et, 2019.Dense fog burst reinforcement over Eastern China: A review [J].Atmospheric Research, 230: 1-12,
[8]Liu D, Li Z, Yan W, al et, 2017.Advances in fog microphysics research in China [J].Asia-Pacific Journal of the Atmospheric Sciences, 53: 131-148.
[9]Lu C, Liu Y, Niu S, al et, 2013.Examination of microphysical relationships and corresponding microphysical processes in warm fogs [J].Acta Meteorological Sinica, 27: 832-848.
[10]Mazoyer M, Burnet F, Denjean C, al et, 2019.Experimental study of the aerosol impact on fog microphysics[J].Atmospheric Chemistry and Physics, 19: 4323-4344.
[11]Shrestha S, Moore G A, Peel M C, 2018.Trends in winter fog events in the Terai region of Nepal[J].Agricultural and Forest Meteorology, 259: 118-130.
[12]包云轩, 丁秋冀, 袁成松, 等, 2013.沪宁高速公路一次复杂性大雾过程的数值模拟试验[J].大气科学, 37(1): 124-136.
[13]陈翔翔, 许爱华, 许彬, 等, 2018.2000-2012年江西省三类区域性大雾时空分布及影响因素特征[J].气象与环境学报, 34(3): 37-47.
[14]陈潇潇, 郭品文, 罗勇, 2008.中国不同等级雾日的气候特征[J].气候变化研究进展, 4(2): 106-110.
[15]丁一汇, 柳艳菊, 2014.近50年我国雾和霾的长期变化特征及其与大气湿度的关系[J].中国科学(地球科学), 44(1): 37-48.
[16]付桂琴, 张迎新, 张庆红, 等, 2013.河北省低能见度事件特征分析[J].气象, 39(8): 1042-1049.
[17]高红燕, 贺音, 王丹, 2013.近50年西安市雾日数的变化趋势及可能原因[J].高原气象, 32(6): 215-222.DOI: 10.7522/j.issn. 1000-0534.2013.00058.
[18]贺皓, 吕红, 徐虹, 2004.陕西省大雾的气候特征[J].高原气象, 23(3): 129-133.
[19]何月, 张小伟, 蔡菊珍, 等, 2015.基于MTSAT卫星遥感监测的浙江省及周边海区大雾分布特征[J].气象学报, 73(1): 200-210.
[20]焦圣明, 朱承瑛, 朱毓颖, 等, 2016.江苏地区一次罕见持续性强浓雾过程的成因分析[J].气象学报, 74(2): 200-212.
[21]李子华, 吴君, 1995.重庆市区冬季雾滴谱特征[J].南京气象学院学报, 18(1): 46-51.
[22]李子华, 黄建平, 周毓荃, 等, 1999.1996年南京连续5天浓雾的物理结构特征[J].气象学报, 57(5): 622-631.
[23]李子华, 2001.中国近40年来雾的研究[J].气象学报, 59(5): 616-624.
[24]李子华, 刘端阳, 杨军, 2011.辐射雾雾滴谱拓宽的微物理过程和宏观条件[J].大气科学, 35 (1): 41-54.
[25]刘端阳, 濮梅娟, 杨军, 等, 2009.2006年12月南京连续4天浓雾的微物理结构及演变特征[J].气象学报, 67(1): 147-157.
[26]刘梅, 严文莲, 张备, 等, 2014.2013年1月江苏雾霾天气持续和增强机制分析[J].气象, 40(7): 835-843.
[27]慕熙昱, 徐琪, 周林义, 等, 2018.基于AWOS数据的南京禄口机场低能见度特征统计研究[J].高原气象, 37(4): 1129-1142.DOI: 10.7522/j.issn.1000-0534.2017.00095.
[28]濮梅娟, 严文莲, 商兆堂, 等, 2008.南京冬季雾爆发性增强的物理特征研究[J].高原气象, 27(5): 1111-1118.
[29]田心如, 韩永翔, 陈广昌, 等, 2014.江苏省大雾的变化特征及气溶胶对其影响[J].中国环境科学, 34(10): 2485-2489.
[30]王宏斌, 张志薇, 刘端阳, 等, 2018.基于葵花8号新一代静止气象卫星的夜间雾识别[J].高原气象, 37(6): 1749-1764.DOI: 10.7522/j.issn.1000-0534.2018.00037.
[31]王丽萍, 陈少勇, 董安祥, 2006.气候变化对中国大雾的影响[J].地理学报, 61(5): 527-536.
[32]王丽萍, 陈少勇, 董安祥, 2005.中国雾区的分布及其季节变化[J].地理学报, 60(4): 689-697.
[33]吴兑, 邓雪娇, 毛节泰, 等, 2007.南岭大瑶山高速公路浓雾的宏微观结构与能见度研究[J].气象学报, 65(3): 406-410.
[34]吴兑, 吴晓京, 李菲, 2011.中国大陆1951-2005年雾与轻雾的长期变化[J].热带气象学报, 27(2): 145-151.
[35]尹志聪, 王会军, 郭文利, 2015.华北黄淮地区冬季雾和霾的时空气候变化特征.中国科学(地球科学), 45(5): 649-655.
[36]严文莲, 朱承瑛, 朱毓颖, 等, 2018.江苏一次大范围的爆发性强浓雾过程研究[J].气象, 44(7): 892-901.
[37]郑玉萍, 李景林, 2008.乌鲁木齐近31年大雾天气气候特征分析[J].气象, 34(8): 24-30.