To evaluate the influence of sponge city planning on urban heat island effect, space-time characteristics of an urban heat island index, which defined by a complex terrain considered City Cluster Algorithm and calculated using land surface temperature data from MODIS satellite remote sensing, of a constructing urban area with sponge city planning in Chongqing, China has been compared to constructing and constructed urban areas with traditional city planning.Meanwhile, sensitive tests of different land use planning have also been implemented using multi-scale numerical simulation.The analysis results show that the heat island effect in new urban areas with sponge city planning mainly comes from the heat island radiation of the surrounding cities, and compared to traditional cities, the average heat island intensity is smaller and the trend of strong heat island growing is relatively moderate.Results of the numerical simulation indicate that sponge city can has lower near-surface temperature and better ventilation by using more reasonable land use planning, which ultimately appears as a reduction of urban heat island effect.
Haonan ZHU
,
Xiaoran LIU
,
Jia Sun
,
Jie Zhou
,
Bingyan Cheng
,
Ning Zhang
. Evaluation of the Urban Heat Island Effect of Sponge City in Chongqing using Satellite Remote Sensing Data and Numerical Simulation[J]. Plateau Meteorology, 2021
, 40(5)
: 1202
-1212
.
DOI: 10.7522/j.issn.1000-0534.2020.00089
[1]Chen F, Kusaka H, Bornstein R, al et, 2011.The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems[J].International Journal of Climatology, 31(2): 273-288.DOI: 10.1002/joc.2158.
[2]Chen F, Yang X C, Zhu W P, 2014.WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China[J].Atmospheric Research, 138(3): 364-377.DOI: 10.1016/j.atmosres.2013.12.005.
[3]Crosson W L, Al-Hamdan M Z, Hemmings S N J, al et, 2012.A daily merged MODIS Aqua-Terra land surface temperature data set for the conterminous United States[J].Remote Sensing of Environment, 119(8): 315-324.DOI: 10.1016/j.rse.2011.12.019.
[4]Dickinson R E, 1988.The Force-Restore Model for surface temperatures and its generalizations[J].Journal of Climate, 1(11): 1086-1097.DOI: 10.1175/1520-0442(1988)001<1086: TFMFST>2.0.CO; 2.
[5]Fang X Y, Jiang W M, Miao S G, al et, 2004.The Multi-Scale Numerical Modeling system for research on the relationship between urban planning and meteorological environment[J].Advances in Atmospheric Sciences, 21(1): 103-112.DOI: 10.1007/bf02915684.
[6]Fatima S F, Chaudhry H N, 2017.Steady-state CFD modelling and experimental analysis of the local microclimate in Dubai (UAE)[J].Sustainable Buildings, 2.DOI: 10.1051/sbuild/2017001.
[7]Gong P, Wang J, Yu L, al et, 2013.Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data[J].International Journal for Remote Sensing, 34(7-8): 2607-2654.DOI: 10.1080/01431161.2012. 748992.
[8]Klemp J B, 2011.A Terrain-Following Coordinate with Smoothed Coordinate Surfaces[J].Monthly Weather Review, 139(7): 2163-2169.DOI: 10.1175/MWR-D-10-05046.1.
[9]Oke T R, 1982.The energetic basis of the urban heat island[J].Quarterly Journal of the Royal Meteorological Society, 108(455): 1-24.DOI: 10.1002/qj.49710845502.
[10]Pan L L, Liu Y B, Liu Y W, al et, 2015.Impact of four‐dimensional data assimilation (FDDA) on urban climate analysis[J].Journal of Advances in Modeling Earth Systems, 7(4): 1997-2011.DOI: 10. 1002/2015MS000487.
[11]Park S B, Baik J J, Lee S H, 2015.Impacts of mesoscale wind on turbulent flow and ventilation in a densely built-up urban area[J].Journal of Applied Meteorology & Climatology, 54(4): 811-824.DOI: 10.1175/JAMC-D-14-0044.1.
[12]Peng S S, Piao S L, Ciais P, al et, 2012.Surface urban heat island across 419 global big cities[J].Environmental Science & Technology, 46(2): 696-703.DOI: 10.1021/es2030438.
[13]Rozenfeld H D, Rybski D, Andrade J S, al et, 2008.Laws of population growth[J].Proceedings of the National Academy of Sciences of the United States of America, 105(48): 18702-18707.DOI: 10.1073/pnas.0807435105.
[14]Schwarz N, Lautenbach S, Seppelt R, 2011.Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures[J].Remote Sensing of Environment, 115(12): 3175-3186.DOI: 10.1016/j.rse.2011.07.003.
[15]Steeneveld G J, Koopmans S, Heusinkveld B G, al et, 2011.Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands[J].Journal of Geophysical Research Atmospheres, 116(D20).DOI: 10.1029/2011JD015988.
[16]Tian K L, Marcel I, Martin M, al et, 2017.Multi-scale urban system modeling for sustainable planning and design[J].Energy and Buildings, 157(15): 78-91.DOI: 10.1016/j.enbuild.2017.02.024.
[17]Wang W, Beezley C, Duda M, 2012.WRF ARW V3: User’s Guide[J].Wang, C.Beezley, M.Duda,et al.URL: .
[18]Wang W G, Jiang W M, 1998.A 3-Dimensional nonhydrostatic dispersion modeling system for modeling of atmospheric transport and diffusion over coastal complex terrain in the Hongkong-Shenzhen area[J].Meteorology and Atmospheric Physics, 68(1-2): 23-33.DOI: 10.1007/bf01025381.
[19]Zhang H,Naokis S,Takeki I, al et, 2007.Modified RAMS-Urban canopy model for heat island simulation in Chongqing, China[J].Journal of Applied Meteorology and Climatology, 47(2): 509-524.DOI: 10.1175/2007JAMC1397.1.
[20]Zhang H Y, Jin M L, Leach M, al et, 2017.A study of the Oklahoma City urban heat island effect using a WRF/Single-Layer Urban Canopy Model, a joint urban 2003 field campaign, and MODIS satellite observations[J].Climate, 5(3): 72.DOI: 10. 3390/cli5030072.
[21]Zhou B, Rybski D, Kropp J P, 2013.On the statistics of urban heat island intensity[J].Geophysical Research Letters, 40(20): 5486-5491.DOI: 10.1002/2013GL057320.
[22]陈松林, 王天星, 2009.等间距法和均值-标准差法界定城市热岛的对比研究[J].地球信息科学学报, 11(2): 145-150.DOI: 10. 3969/j.issn.1560-8999.2009.02.002.
[23]仇保兴, 2015.海绵城市(LID)的内涵、 途径与展望[J].建设科技, (1): 11-18.
[24]姜平, 刘晓冉, 朱浩楠, 等, 2019.复杂地形下局地山谷风环流的理想数值模拟[J].高原气象, 38(6): 1272-1282.DOI: 10.7522/j.issn.1000-0534.2019.00019.
[25]蒋维楣, 周荣卫, 刘红年, 2009.精细城市微尺度模式的建立及应用研究[J].南京大学学报(自然科学), 45(6): 769-778.DOI: 10.3321/j.issn: 0469-5097.2009.06.006.
[26]刘晓冉, 朱浩楠, 姜平, 等, 2020.重庆市广阳岛生态规划对局地气候影响的数值模拟试验[J].长江流域资源与环境, 29(4): 974-984.DOI: 10.11870/cjlyzyyhj202004018.
[27]苗世光, 蒋维楣, 王晓云, 等, 2002.城市小区气象与污染扩散数值模式建立的研究[J].环境科学学报, 22(4): 478-483.DOI: 10.3321/j.issn: 0253-2468.2002.04.013.
[28]乔治, 田光进, 2015.基于MODIS的2001年-2012年北京热岛足迹及容量动态监测[J].遥感学报, 19(3): 476-484.DOI: 10. 11834/jrs.20154165.
[29]秦文翠, 胡聃, 李远征, 等, 2015.基于ENVI-met的北京典型住宅区微气候数值模拟分析[J].气象与环境学报, 31(3): 56-62.DOI: 10.3969/j.issn.1673-503X.2015.03.009.
[30]束方勇, 2017.海绵城市理念下的热岛效应生成机制与治理策略[C].中国城市规划年会.
[31]宋雯雯, 陈佳, 刘新超, 等, 2018.遂宁市海绵城市建设对其热岛效应影响的评估[J].高原山地气象研究, 38(1): 70-76.DOI: 10.3969/j.issn.1674-2184.2018.01.011.
[32]王宝民, 孙向明, 刘辉志, 等, 2004.二维街谷热力动力场数值模拟[J].北京大学学报: 自然科学版, 40(5): 774-780.DOI: 10. 3321/j.issn: 0479-8023.2004.05.013.
[33]王靓, 孟庆岩, 吴俊, 等, 2015.2005 -2014年北京市主要城建区热岛强度时空格局分析[J].地球信息科学学报, 17(9): 1047-1054.DOI: 10.3724/SP.J.1047.2015.01047.
[34]谢志清, 杜银, 曾燕, 等, 2015.上海城市集群化发展显著增强局地高温热浪事件[J].气象学报, 73(6): 1104-1113.DOI: 10. 11676/qxxb2015.075.
[35]谢志清, 杜银, 曾燕, 等, 2017.长江三角洲城市集群化发展对极端高温事件空间格局的影响[J].科学通报, 62(2): 233-244.DOI: 10.1360/N972016-00643.
[36]张宁, 蒋维楣, 王晓云, 2002.城市街区与建筑物对气流特征影响的数值模拟研究[J].空气动力学学报, 20(3): 339-342.DOI: 10.3969/j.issn.0258-1825.2002.03.012.
[37]张旭, 黄伟, 陈葆德, 2015.一种新型高度地形追随坐标在GRAPES区域模式中的实现: 理想试验与比较研究[J].气象学报, 73(2): 331-340.DOI: 10.11676/qxxb2015.014.
[38]张兆明, 何国金, 肖荣波, 等, 2005.北京市热岛演变遥感研究[J].遥感信息, 1(6): 46-48.
[39]赵亚芳, 张宁, 陈燕, 等, 2017.环太湖地表城市热岛长期遥感资料分析[J].高原气象, 36(5): 1394-1403.DOI: 10.7522/j.issn. 1000-0534.2016.00097.
[40]中国城市规划设计研究院, 1998.城市道路绿化规划与设计规范[M].DOI: 10.3969/j.issn.1000-3177.2005.06.012.
[41]朱玲, 由阳, 程鹏飞, 等, 2018.海绵建设模式对城市热岛缓解效果研究[J].给水排水, 44(1): 65-69.DOI: 10.3969/j.issn.1002-8471.2018.01.013.