Climate Effects of Soil Freeze-Thaw Process over Qinghai-Xizang Plateau: Progress and Perspectives

  • WANG Chenghai ,
  • YANG Kai ,
  • ZHANG Feimin ,
  • BAO Hongyan ,
  • CHENG Rong ,
  • LI Dengxuan ,
  • CUI Zhiqiang ,
  • LI Kechen
Expand
  • College of Atmospheric Science, Lanzhou University / Key Laboratory of Arid Climatic Resource and Environment of Gansu Province, Lanzhou 730000, Gansu, China

Received date: 2021-06-01

  Revised date: 2021-10-08

  Online published: 2021-12-28

Abstract

The thermal effects of the Qinghai-Xizang Plateau (QXP) on the East Asian and global atmospheric circulation and climate are due to the surface diabatic heating, which is closely related to the land surface processes.This paper reviewed the research progress of soil frozen-thawing process on soil hydrothermal transport, surface diabatic heating over QXP and its climate effects, the main points are as follows: (1) soil frozen-thawing process has "water storage" effect, and the water storage index can reach 0.99 in the whole soil layer.(2) The estimation of surface diabatic heating on QXP is still a challenging problem, and different reanalysis data have large biases, especially in spring, one of the main reasons is the bias of the atmospheric model in simulating the soil frozen-thawing process.(3) The fully coupled water-heat transport scheme and the modified frozen-thawing parameterization scheme can effectively reduce the model biases in the simulation of soil temperature and moisture.(4) Soil moisture anomalies in the previous autumn and winter can persist to spring through the soil frozen-thawing process, causing the surface diabatic heating anomalies in spring, can be a signal of climate prediction.(5) The anomalous thawing of frozen ground in spring over QXP affects the surface diabatic heating by causing soil moisture anomalies, and changes the baroclinicity of the atmosphere on the north and south sides of the QXP, which excites the Rossby wave train, leads the anomalies of atmospheric circulation over the downstream regions, causes summer precipitation anomalies in eastern China.The large biases of the numerical model and reanalysis data in estimation of the surface diabatic heating of QXP limit the deep understanding of the thermal effects of the QXP.How to improve the model parameterization by deepening the understanding of the physical processes of freeze-thaw and snow is a challenging problem and an important part of future research.

Cite this article

WANG Chenghai , YANG Kai , ZHANG Feimin , BAO Hongyan , CHENG Rong , LI Dengxuan , CUI Zhiqiang , LI Kechen . Climate Effects of Soil Freeze-Thaw Process over Qinghai-Xizang Plateau: Progress and Perspectives[J]. Plateau Meteorology, 2021 , 40(6) : 1318 -1336 . DOI: 10.7522/j.issn.1000-0534.2021.zk021

References

[1]Ban-WeissG A, BalaG, CaoL, alet, 2011.Climate forcing and response to idealized changes in surface latent and sensible heat[J].Environmental Research Letters, 6(3): 034032.
[2]BaoH Y, YangK, WangC H, 2017.Characteristics of GLDAS soil-moisture data on the Tibet Plateau[J].Sciences in Cold and Arid Regions, 9(2): 127-141.
[3]BarnettT P, DümenilL, SchleseU, alet, 1989.The Effect of Eurasian Snow Cover on Regional and Global Climate Variations[J].Journal of the Atmospheric Sciences, 46(5): 661-686.
[4]BarryR G, 2003.Mountain cryospheric studies and the WCRP climate and cryosphere (CliC) project[J].Journal of Hydrology, 282(1): 177-181.
[5]BittelliM, VenturaF, CampbellG S, alet, 2008.Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils[J].Journal of Hydrology, 362(3-4): 191-205.
[6]BlanfordH F, 1884.On the Connexion of the Himalaya Snowfall with Dry Winds and Seasons of Drought in India[J].Proceedings of the Royal Society of London, 37(232-234): 3-22.
[7]BoosW R, KuangZ M, 2010.Dominant control of the South Asian monsoon by orographic insulation versus plateau heating[J].Nature, 463: 218-223.
[8]BoosW R, KuangZ M, 2013.Sensitivity of the South Asian monsoon to elevated and non-elevated heating[J].Scientific Reports, 3(1): 1192.
[9]ChenB L, LuoS Q, LyuS H, alet, 2014.Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau[J].Climate Research, 59(3): 243-257.
[10]ChenY Y, YangK, QinJ, alet, 2013.Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau[J].Journal of Geophysical Research Atmospheres, 118: 4466-4475,
[11]ChenY Y, YangK, TangW J, alet, 2014.Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands[J].Science China: Earth Sciences, 55: 1001-1011
[12]ChowK C, ChanJ C, ShiX, alet, 2008.Time-lagged effects of spring Tibetan Plateau soil moisture on the monsoon over China in early summer[J].International Journal of Climatology, 28(1): 55-67.
[13]CoxP M, BettsR A, BuntonC B, alet, 1999.The impact of new land surface physics on the GCM simulation of climate and climate sensitivity [J].Climate Dynamics, 15, 183-203.
[14]CuiY, WangC H, 2009.Comparison of sensible and latent heat fluxes from reanalysis datasets during the transition season over the western Tibetan Plateau[J].Progress in Natural Science: Materials International, 19(6): 719-726.DOI: 10.1016/j.pnsc. 2008.11.001.
[15]CuoL, ZhangY, BohnT J, alet, 2015.Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 120, 8276-8298.
[16]de VriesD A, 1963.Thermal properties of soils.InW.R.vanWijk (Ed..Physics of the plant environment.Amsterdam, the Netherlands: North-Holland.
[17]DeckerM, and ZengX B, 2006.An empirical formulation of soil ice fraction based on in situ observations[J].Geophysical Research Letters, 33, L05402.
[18]DengM S, MengX H, LyvY Q, alet, 2020.Comparison of soil water and heat transfer modeling over the Tibetan Plateau using two community land surface model (CLM) versions [J].Journal of Advances in Modeling Earth Systems, 12, e2020MS002189.
[19]DuanA M, WuG X, 2005.Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J].Climate Dynamics, 24(7): 793-807.
[20]DuanA M, WuG X, 2008.Weakening Trend in the Atmospheric Heat Source over the Tibetan Plateau during Recent Decades.Part I: Observations[J].Journal of Climate, 21(13): 3149-3164.
[21]DuanA M, XiaoZ X, HuJ, 2014.Can Current AGCMs Reproduce Historical Changes in the Atmospheric Diabatic Heating over the Tibetan Plateau?[J].Atmospheric and Oceanic Science Letters, 7(2): 143-148.
[22]FaroukiO, 1981.The thermal properties of soils in cold regions[J].Cold Regions Science & Technology, 5(1): 67-75.
[23]FlerchingerG N, SaxtonK E, 1989.Simultaneous Heat and Water Model of a Freezing Snow-Residue-Soil System I.Theory and Development[J].Transactions of the ASAE, 32(2): 0565-0571.
[24]FlohnH, 1957.Large-scale Aspects of the “Summer Monsoon” in South and East Asia[J].Journal of the Meteorological Society of Japan, 75: 180-186.
[25]FlohnH, 1960.Recent investigations on the mechanism of the “summer monsoon” of southern and eastern Asia[J].Monsoons of the World.
[26]FuchsM, CampbellG S, PapendickR I, 1978.An analysis of sensible and latent heat flow in a partially frozen unsaturated soil [J].Soil Science Society of America Journal, 42, 379-385.
[27]GaoR, WeiZ G, DongW J, alet, 2005.Impact of the Anomalous Thawing in the Tibetan Plateau on Summer Precipitation in China and Its Mechanism[J].Advances in Atmospheric Sciences, 22(2): 238-245.
[28]GaoY H, LiK, ChenF, alet, 2015.Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau[J].Journal of Geophysical Research: Atmosphere, 120: 9258-9278.
[29]GuoD L, YangM X, WangH J, 2011.Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau[J].Hydrological processes, 25(16): 2531-2541.
[30]HansonC T, BlevinsR L, 1979.Soil Water in Coarse Fragments1[J].Soil Science Society of America Journal, 43(4).
[31]HanssonK, SimunekJ, MizoguchiM, alet, 2004.Water Flow and Heat Transport in Frozen Soil: Numerical Solution and Freeze-Thaw Applications[J].Vadose Zone Journal, 3: 693-704.
[32]HsuH, LiuX, 2003.Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall[J].Geophysical Research Letters, 30(20): 2066.
[33]KangS, XuY, YouQ, alet, 2010: Review of climate and cryospheric change in the Tibetan Plateau[J].Environmental research letters, 5(1): 015101.
[34]KorenV, SchaakeJ, MitchellK, alet, 1999.A parameterization of snowpack and frozen ground intended for NCEP weather and climate models[J].Journal of Geophysical Research Atmospheres, 104(D16): 19569-19585.
[35]KosterR D, DirmeyerP A, GuoZ C, alet, 2004.Regions of Strong Coupling Between Soil Moisture and Precipitation[J].Science, 305(5687): 1138-1140.
[36]KosterR D, GuoZ C, DirmeyerP, alet, 2006.GLACE: The Global Land-Atmosphere Coupling Experiment: Part 1: Overview[J].Journal of Hydrometeorology, 7(4): 590-610.
[37]LawrenceD M, OlesonK W, FlannerM G, alet, 2011.Parameterization improvements and functional and structural advances in version 4 of the Community Land Model [J].Journal of Advances in Modeling Earth Systems, 3, M03001.
[38]LiJ Y, MaoJ Y, 2018.The impact of interactions between tropical and midlatitude intraseasonal oscillations around the Tibetan Plateau on the 1998 Yangtze floods[J].Quarterly Journal of the Royal Meteorological Society, 144(4): 1123-1139.
[39]LiM X, WuP L, MaZ G, alet, 2020.Changes in Soil Moisture Persistence in China over the Past 40 Years under a Warming Climate[J].Journal of Climate, 33(22): 9531-9550.
[40]LiK C, ZhangF M, YangK, alet, 2021.Improvement of summer precipitation simulation by correcting biases of spring soil moisture in the seasonal frozenthawing zone over the Northern Hemisphere[J].Climate Dynamics.DOI: 10.1007/s00382-021-06032-z.
[41]LuoH B, YanaiM, 1983.The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979.Part I: Precipitation and kinnematic analyses[J].Monthly Weather Review, 111(5): 922-944.
[42]LuoS Q, LyuS H, ZhangY, 2009.Development and validation of the frozen soil parameterization scheme in Common Land Model[J].Cold Regions Science & Technology, 55(1): 130-140.
[43]MassonV, MoigneP L, MartinE, alet, 2013.The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes [J].Geoscientific Model Development, 6(4): 929-960.
[44]NicolskyD J, RomanovskyV E, AlexeevV A, alet, 2007.Improved modeling of permafrost dynamics in a GCM land-surface scheme[J].Geophysical Research Letters, 34(8): 162-179.
[45]NiuG Y, YangZ L, 2007.Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale[J].Journal of Hydrometeorology, 7(5): 937-952.
[46]NovakM D, 2010.Dynamics of the near-surface evaporation zone and corresponding effects on the surface energy balance of a drying bare soil[J].Agricultural and Forest Meteorology, 150(10): 1358-1365.
[47]OchsnerT, BakerJ M, 2008.In situ monitoring of soil thermal properties and heat flux during freezing and thawing[J].Soil Science Society of America Journal, 72(4): 1025.
[48]OverduinP P, KaneD L, van LoonW K P, 2006.Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating.Cold Reg[J].Cold Regions Science and Technology, 45(1): 8-22.
[49]PeckA J, WatsonJ D, 1979.Hydraulic conductivity and flow in non-uniform soil[C]//Workshop on Soil Physics and Field heterogeneity CSIRO.Division of Environmental Mechanics, Canberra, Australia, 31-39.
[50]QianY F, ZhengY Q, ZhangY, alet, 2003.Responses of China's summer monsoon climate to snow anomaly over the Tibetan Plateau[J].International Journal of Climatology, 23(6): 593-613.
[51]SeneviratneS I, KosterR D, GuoZ C, alet, 2006.Soil moisture memory in AGCM simulations: analysis of global land-atmosphere coupling experiment (GLACE) data[J].Journal of Hydrometeorology, 7(5): 1090-1112.
[52]ShenJ L, LiK C, CuiZ Q, alet, 2021.Improvement of summer precipitation simulation in China by assimilating spring soil moisture over the Tibetan Plateau[J].Theoretical and Applied Climatology.DOI: 10.1007/s00704-021-03840-5
[53]ShiQ, LiangS, 2014.Surface-sensible and latent heat fluxes over the Tibetan Plateau from ground measurements, reanalysis, and satellite data[J].Atmospheric Chemistry and Physics, 14(11): 5659-5677.
[54]SpaansE J A, BakerJ M, 1996.The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic [J].Soil Science Society of America Journal, 60, 13-19.
[55]SunS F, ZhangX, GuoA W, 2003.A simplified version of the coupled heat and moisture transport model[J].Global and Planetary Change, 37(3): 265-276.
[56]SwensonS C, LawrenceD M, LeeH, 2012.Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community land model[J].Journal of Advances in Modeling Earth Systems, 4(3): M08002.
[57]ToureA M, RodellM, YangZ L, alet, 2016.Evaluation of the Snow Simulations from the Community Land Model, Version 4 (CLM4)[J].Journal of Hydrometeorology, 17(1): 153-170.
[58]WangB, BaoQ, HoskinsB, alet, 2008.Tibetan Plateau warming and precipitation changes in East Asia[J].Geophysical Research Letters, 35(14).
[59]WangC H, CuiY, JinS L, 2010.Oscillation Propagation Features of Atmosphere around the Qinghai-Xizang Plateau during the Spring Season of Typical Strong and Weak Monsoon Years[J].Science China Earth Sciences, 54(2): 305-314.DOI: 10.1007/s11430-010-4113-x.
[60]WangC H, CuiZ Q, 2018.Improvement of Short-Term Climate Prediction with Indirect Soil Variables Assimilation in China[J].Journal of Climate, 31(4): 1399-1412.
[61]WangC H, DongW J, WeiZ G, 2003.Study on Relationship between Freezing-Thawing Processes of the Qinghai-Tibet Plateau and the Atmospheric Circulation over East Asia[J].Chinese Journal of Geophysics, 46(3): 438-441.DOI: 10.1002/cjg2.3361.
[62]WangC H, WangZ L, KongY, alet, 2019.Most of the Northern Hemisphere Permafrost Remains under Climate Change[J].Scientific Report, 9(1): 3295.
[63]WangC H, WuD, KongY, alet, 2017a.Changes of Soil Thermal and Hydraulic Regimes in Northern Hemisphere Permafrost Regions over the 21st Century[J].Arctic, Antarctic, and Alpine Research, 49(2): 305-319.
[64]WangC H, YangK, 2018.A new scheme for considering soil water-heat transport coupling based on Community Land Model: Model description and preliminary validation[J].Journal of Advances in Modeling Earth Systems, 10(4): 927-950.
[65]WangC H, YangK, LiY L, alet, 2017b.Impacts of Spatiotemporal Anomalies of Tibetan Plateau Snow Cover on Summer Precipitation in Eastern China[J].Journal of Climate, 30(3): 885-903.
[66]WangC H, YangK, ZhangF M, 2020.Impacts of Soil Freeze-Thaw Process and Snow Melting Over Tibetan Plateau on Asian Summer Monsoon System: A Review and Perspective[J].Frontiers in Earth Science.
[67]WangY, WangC H, 2016.Features of clouds and convection during the pre-and post-onset periods of the Asian summer monsoon[J].Theoretical and applied climatology, 123(3-4): 551-564.
[68]WangZ Q, DuanA M, WuG X, 2014.Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: case studies using the WRF model[J].Climate Dynamics, 42(11-12): 2885-2898.
[69]WuG X, LiuY M, HeB, alet, 2012.Thermal Controls on the Asian Summer Monsoon[J].Scientific Reports, 2: 404.
[70]WuG X, ZhangY S, 1998.Tibetan Plateau Forcing and the Timing of the Monsoon Onset over South Asia and the South China Sea[J].Monthly Weather Review, 126(4): 913-927.
[71]WuT W, QianZ A, 2003.The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation[J].Journal of Climate, 16(12): 2038-2051.
[72]XieZ L, WangB, 2018.Summer Atmospheric Heat Sources over the Western-Central Tibetan Plateau: An Integrated Analysis of Multiple Reanalysis and Satellite Datasets[J].Journal of Climate, 32(4).
[73]YanaiM, LiC F, SongZ S, 1992.Seasonal Heating of the Tibetan Plateau and Its Effects on the Evolution of the Asian Summer Monsoon[J].Journal of the Meteorological Society of Japan, 70(1): 419-434.
[74]YangK, WuH, QinJ, alet, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review[J].Global and Planetary Change, 112: 79-91.
[75]YangK, WangC H, 2019a.Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations[J].Agricultural and Forest Meteorology, 265: 280-294.
[76]YangK, WangC H, 2019b.Seasonal persistence of soil moisture anomalies related to freeze-thaw over the Tibetan Plateau and prediction signal of summer precipitation in eastern China[J].Climate Dynamics, 53: 2411-2424.
[77]YangK, WangC H, BaoH Y, 2016.Contribution of soil moisture variability to summer precipitation in the Northern Hemisphere[J].Journal of Geophysical Research Atmospheres, 121(20): 12108-12124.
[78]YangK, WangC H, LiS Y, 2018.Improved simulation of Frozen-Thawing Process in Land Surface Model (CLM4.5) [J].Journal of Geophysical Research Atmospheres, 123(23): 238-258.
[79]YasunariT, KitohA, TokiokaT, 1991.Local and remote responses toexcessive snow mass over Eurasia appearing in the northern springand summer climate-a study with the MRI GCM[J].Journal of theMeteorological Society of Japan 69: 473-487.
[80]YeD Z, LuoS W, ChuP, 1957.The Wind Structure and Heat Balance in the Lower Troposphere over Tibetan Plateau and Its Surrounding[J].Acta Meteorologica Sinica, 28: 20-33.
[81]YuL Y, ZengY J, WenJ, alet, 2018.Liquid-vapor-air flow in the frozen soil[J].Journal of Geophysical Research: Atmospheres, 123(14): 7393-7415.
[82]ZhangX, SunS, XueY, 2007.Development and testing of a frozen soil parameterization for cold region studies[J].Journal of Hydrometeorology, 8(4): 852-861.
[83]ZhangY, LüS H, 2002.Development and validation of a simple frozen soil parameterization scheme used for climate model[J].Advances in Atmospheric Sciences, 19(3): 513-527.
[84]ZhaoP, ChenL X, 2001.Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China[J].Science China Earth Science, 44(9): 858-864.
[85]ZhengD H, van der VeldeR, SuZ B, alet, 2017.Evaluation of Noah Frozen Soil Parameterization for Application to a Tibetan Meadow Ecosystem[J].Journal of Hydrometeorology, 18(6): 1749-1763.
[86]ZhuL H, HuangG, FanG Z, alet, 2018.Elevation-dependent sensible heat flux trend over the Tibetan Plateau and its possible causes[J].Climate Dynamics, 52: 3997-4009.
[87]边晴云, 吕世华, 陈世强, 等, 2016.黄河源区降雪对不同冻融阶段土壤温湿变化的影响[J].高原气象, 35(3): 621-632.DOI: 10.7522/j.issn.1000-0534.2016.00029.
[88]陈烈庭, 1977.东太平洋赤道地区海水温度异常对热带大气环流及我国汛期降水的影响[J].大气科学, 1(1): 1-12.
[89]陈烈庭, 1998.青藏高原冬春季异常雪盖与江南前汛期降水关系的检验和应用[J].应用气象学报, 9: 2-9.
[90]陈烈庭, 2001.青藏高原异常雪盖和ENSO在1998年长江流域洪涝中的作用[J].大气科学, 25(2): 184-192.
[91]陈烈庭, 阎志新, 1979.青藏高原冬春季积雪对大气环流和我国南方汛期降水的影响[M].中长期水温气象预报文集(1).北京: 水电出版社: 194-195.
[92]陈乾金, 高波, 李维京, 等, 2000.青藏高原冬季积雪异常和长江中下游主汛期旱涝及其与环流关系的研究[J].气象学报, 58(5): 582-595.
[93]陈兴芳, 宋文玲, 2000.欧亚和青藏高原冬春季积雪与我国夏季降水关系的分析和预测应用[J].高原气象, 19(2): 214-223.
[94]程国栋, 1984.我国高海拔多年冻土地带性规律之探讨[J].地理学报, 39(2): 185-193.
[95]段安民, 刘屹岷, 吴国雄, 2003.4~6月青藏高原热状况与盛夏东亚降水和大气环流的异常[J]. 中国科学: D辑, 33(10): 997-1004.
[96]范可, 王会军, 2007.南极涛动异常及其对冬春季北半球大气环流影响的数值模拟试验[J].地球物理学报, 2: 397-403.
[97]高荣, 韦志刚, 董文杰, 等, 2003.20世纪后期青藏高原积雪和冻土变化及其与气候变化的关系[J].高原气象, 22(2): 191-196.
[98]高荣, 钟海玲, 董文杰, 等, 2011.青藏高原积雪、 冻土对中国夏季降水影响研究[J].冰川冻土, 33(2): 254-260.
[99]葛骏, 余晔, 李振朝, 等, 2016.青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J].高原气象, 35: 608-620.DOI: 10.7522/j.issn.1000-0534.2016.00032.
[100]郭维栋, 马柱国, 王会军, 2007.土壤湿度——一个跨季度降水预测中的重要因子及其应用探讨[J].气候与环境研究, 12(1): 20-28.
[101]李登宣, 王澄海, 2016.青藏高原春季土壤湿度与中国东部夏季降水之间的关系[J].冰川冻土, 38(1): 89-99.
[102]李倩, 孙菽芬, 2007.通用的土壤水热传输耦合模型的发展和改进研究[J].中国科学D辑: 地球科学, 37(11): 1522-1535.
[103]李若麟, 保鸿燕, 李课臣, 等, 2016.全球土壤湿度的记忆性及其气候效应[J].冰川冻土, 38(6): 1470-1481.
[104]李时越, 杨凯, 王澄海, 2018.陆面模式CLM4.5在青藏高原土壤冻融期的偏差特征及其原因[J].冰川冻土, 40(2): 322-334.
[105]李述训, 程国栋, 1996.气候持续变暖条件下青藏高原多年冻土变化趋势数值模拟[J].中国科学: D辑, 26(4), 342-347.
[106]李新, 程国栋, 2002.冻土-气候关系模型评述[J].冰川冻土, 24(3): 315-321.
[107]刘新, 李伟平, 许晃雄, 等, 2007.青藏高原加热对东亚地区夏季降水的影响[J].高原气象, 26(6): 1287-1292.
[108]罗会邦, 陈蓉, 1995.夏半年青藏高原东部大气热源异常对环流和降水的影响[J].气象科学, 4: 94-102.
[109]罗斯琼, 吕世华, 张宇, 等, 2008.CoLM 模式对青藏高原中部 BJ 站陆面过程的数值模拟[J].高原气象, 27(2): 259-271.
[110]罗斯琼, 吕世华, 张宇, 等, 2009.青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J].地球物理学报, 52(4): 919-928.
[111]马翠丽, 吕世华, 潘永洁, 等, 2020.陆面模式砾石参数化在BCC_AVIM陆面过程模式中的应用及检验[J].高原气象, 39(6): 102-115.DOI: 10.7522/j.issn.1000-0534.2019.00129.
[112]马柱国, 符淙斌, 谢力, 等, 2001.土壤湿度和气候变化关系研究中的某些问题[J].地球科学进展, 16(4): 563-568.
[113]潘永洁, 吕世华, 高艳红, 等, 2015.砾石对青藏高原土壤水热特性影响的数值模拟[J].高原气象, 34(5): 1224-1236.DOI: 10. 7522/j.issn.1000-0534.2014.00055.
[114]彭京备, 陈烈庭, 张庆云, 2006.多因子和多尺度合成中国夏季降水预测模型及预报试验[J].大气科学, 30(4): 596-608.
[115]尚大成, 王澄海, 2006.高原地表过程中冻融过程在东亚夏季风中的作用[J].干旱气象, 24(3): 19-22.
[116]宋敏红, 吴统文, 钱正安, 2000.高原地区NCEP热通量再分析资料的检验及在夏季降水预测中的应用[J].高原气象, 19(4): 467-475.
[117]孙菽芬, 金继明, 1997.陆面过程模式研究中的几个问题[J].应用气象学报, 8: 50-57.
[118]孙颖, 丁一汇, 2002.青藏高原热源异常对1999年东亚夏季风异常活动的影响[J].大气科学, 6: 817-828.
[119]王澄海, 崔洋, 2011.东亚夏季风建立前青藏高原地气温差变化特征[J].气候与环境研究, 16(5): 586-596.
[120]王澄海, 崔洋, 靳双龙, 等, 2009.南海夏季风强弱年青藏高原地区春季大气的低频振荡特征[J].自然科学进展, 19(11): 1194-1202.
[121]王澄海, 董安祥, 王式功, 等, 2000.青藏高原积雪与西北春季降水的相关特征[J].冰川冻土, 22: 340-346.
[122]王澄海, 董文杰, 韦志刚, 2001.青藏高原季节性冻土年际变化的异常特征[J].地理学报, 56: 523-531.
[123]王澄海, 董文杰, 韦志刚, 2003.青藏高原季节冻融过程与东亚大气环流关系的研究[J].地球物理学报, 46: 309-316.
[124]王澄海, 耿立成, 2012.奇异谱分析-最大熵结合最优子集回归方法在中国夏季降水预测中的应用[J].气象, 38(1): 41-46.
[125]王澄海, 尚大成, 2007.藏北高原土壤温、 湿度变化在高原干湿季转换中的作用[J].高原气象, 26(4): 677-685.
[126]王澄海, 师锐, 2007.青藏高原西部陆面过程特征的模拟分析[J].冰川冻土, 29(1): 73-81.
[127]王澄海, 师锐, 左洪超, 2008.青藏高原西部冻融期陆面过程的模拟分析[J].高原气象, 27(16): 239-248.
[128]王静, 祁莉, 何金海, 等, 2016.青藏高原春季土壤湿度与我国长江流域夏季降水的联系及其可能机理[J].地球物理学报, 59(11): 3985-3995.
[129]王艺, 伯玥, 王澄海, 2016.青藏高原中东部云量变化与气温的不对称升高[J].高原气象, 35(4): 908-919.DOI: 10.7522/j.issn.1000-0534.2015.00033.
[130]韦志刚, 黄荣辉, 陈文, 等, 2002.青藏高原地面站积雪的空间分布和年代际变化特征[J].大气科学, 26(4): 496-508.
[131]韦志刚, 黄荣辉, 董文杰, 2003.青藏高原气温和降水的年际和年代际变化[J].大气科学, 27(2): 157-170.
[132]韦志刚, 罗四维, 董文杰, 等, 1998.青藏高原积雪资料分析及其与我国夏季降水的关系[J].应用气象学报, (S1): 40-47.
[133]吴国雄, 段安民, 刘屹岷, 等, 2013.关于亚洲夏季风爆发的动力学研究的若干近期进展[J].大气科学, 37(2): 211-228.
[134]吴国雄, 薛纪善, 王在志, 等, 1995.青藏高原化雪迟早的辐射效应对季节变化的影响[J].甘肃气象, (1): 1-8.
[135]吴统文, 钱正安, 2000.青藏高原冬春积雪异常与中国东部地区夏季降水关系的进一步分析[J].气象学报, 58(5): 570-581.
[136]熊建胜, 张宇, 王少影, 等, 2014.CLM4.0土壤水分传输方案改进在青藏高原陆面过程模拟中的效应[J].高原气象, 33(2): 323-336.DOI: 10.7522/j.issn.1000-0534.2014.00012.
[137]徐学祖, 王家澄, 张立新, 2001.冻土物理学[M].北京: 科学出版社.
[138]徐悦, 吕世华, 马翠丽, 等, 2020.BCC_CSM模式砾石参数化方案在青藏高原模拟效果检验[J].高原气象, 39(6): 116-126.DOI: 10.7522/j.issn.1000-0534.2019.00140.
[139]杨凯, 2020.青藏高原冻融过程与地表非绝热加热异常对东亚气候影响的研究[D].兰州: 兰州大学.
[140]杨凯, 胡田田, 王澄海, 2017.青藏高原南、 北积雪异常与中国东部夏季降水关系的数值试验研究[J].大气科学, 41(2): 345-356.
[141]杨梅学, 姚檀栋, HiroseN, 等, 2006.青藏高原表层土壤的日冻融循环[J].科学通报, 51: 1974-1976.
[142]杨梅学, 姚檀栋, 何元庆, 2002.青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J].山地学报, 20: 553-558.
[143]姚闯, 吕世华, 李照国, 等, 2020.黄河源区积雪对冻土水热过程影响的数值模拟[J].高原气象, 39(6): 1167-1180.DOI: 10. 7522/j.issn.1000-0534.2019.00128.
[144]叶笃正, 高由禧, 1979.青藏高原气象学[M].北京: 科学出版社.
[145]叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报, 28(2): 108-121.
[146]叶笃正, 张捷迁, 1974.青藏高原加热作用对夏季东亚大气环流影响的初步模拟实验[J].中国科学, 3: 301-320.
[147]余莲, 王澄海, 2012.青藏高原地区土壤湿度的模拟及订正[J].物理学报, 61(2): 531-538.
[148]张霞, 2004.旱区及冻土区陆面过程研究——模式发展[D].北京: 中国科学院大气物理研究所.
[149]张宇, 吕世华, 2001.陆面过程模式对不同土壤物理性质的敏感性研究[J].冰川冻土, 23(3): 276-275.
[150]张宇, 吕世华, 孙菽芬, 2004.冻土过程在CCM3模式中的气候效应[J].高原气象, 23(2): 192-199.
[151]张宇, 宋敏红, 吕世华, 等, 2003.冻土过程参数化方案与中尺度大气模式的耦合[J].冰川冻土, 25(5): 541-546.
[152]朱玉祥, 丁一汇, 2007.青藏高原积雪对气候影响的研究进展和问题[J].气象科技, 35(1): 1-8.
[153]朱玉祥, 丁一汇, 徐怀刚, 2007.青藏高原大气热源和冬春积雪与中国东部降水的年代际变化关系[J].气象学报, 65(6): 946-958.
[154]竺夏英, 刘屹岷, 吴国雄, 2012.夏季青藏高原多种地表感热通量资料的评估[J].中国科学: 地球科学, 42(7): 1104-1112.
Outlines

/