An Evaluation for Impacts of the Horizontal Resolution of CMIP6 Models on Simulating Extreme Summer Rainfall over Southwest China

  • HUANG Zili ,
  • WU Xiaofei ,
  • MAO Jiangyu
Expand
  • School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Received date: 2021-03-04

  Revised date: 2021-07-24

  Online published: 2021-12-28

Abstract

Due to complex topography in Southwest China (SWC), state-of-the-art climate models cannot capture sufficiently the distribution and intensity of summer precipitation, especially extreme rainfall (ER) over SWC.Thus, this study is to evaluate how well the current climate models could reproduce the climate mean summer precipitation and to what extend the horizontal resolutions might impact the ER simulations over SWC, based on daily rain-gauge station-observed, satellite-observed and ERA5-reanalysed rainfall datasets and 12 models available from CMIP6 High-Resolution Model Inter-comparison Project (HighResMIP).Each HighResMIP model contains one high-resolution and one low-resolution simulation with the same suite of physical processes and external forcing.Results show that almost all models can reproduce the climate-mean state of summer rainfall over SWC, with an area correlation coefficient (ACC) greater than 0.75 between the rain-gauge observed rainfall and simulated rainfall by each model.Over, the performance of CMIP6 HighResMIP models is better than that of CMIP5 models, but over half of the CMIP6 HighResMIP models still underestimate the summer rain amount over the Sichuan Basin.As the model resolution increased, the intensity and spatial pattern of the simulated summer rainfall over the Hengduan mountains are much closer to the observational dataset, especially to the ERA5 reanalysis.However, the underestimating biases over Sichuan Basin are not improved obviously with a higher horizontal resolution.In terms of ER, large spreads exist in the ER intensity and occurrence frequency over SWC among CMIP6 HighResMIP models.The four models, including CNRM-CM6、 FGOALS-f3、 GFDL-CM4 and HadGEM-GC31, exhibit better performances in capturing ER days and percentage.Even so, the first three of the above four models underestimate the ER days over SWC, but HadGEM-GC31 overestimates ER intensity over Guangxi Province.In contrast, the ER frequency is much lower than that of observation in the models ECMWF-IFS, EC-Earth3P, IPSL-CM6A, MPI-ESM1-2 and MRI-AGCM3-2.The higher resolution simulations can improve the simulation in the rainfall intensity to a certain degree, manifesting mainly in enhancing the rainfall intensity over the mountainous region rather than the flat-terrain area such as the Sichuan Basin.

Cite this article

HUANG Zili , WU Xiaofei , MAO Jiangyu . An Evaluation for Impacts of the Horizontal Resolution of CMIP6 Models on Simulating Extreme Summer Rainfall over Southwest China[J]. Plateau Meteorology, 2021 , 40(6) : 1470 -1483 . DOI: 10.7522/j.issn.1000-0534.2021.zk010

References

[1]AllanR P, SodenB J, 2008.Atmospheric warming and the amplification of precipitation extremes[J].Science, 321(5895): 1481-1484.
[2]ChanS C, KendonE J, FowlerH J, alet, 2012.Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation[J].Climate Dynamics, 41(5): 1475-1495.
[3]ChenL, FrauenfeldO W, 2014.A comprehensive evaluation of precipitation simulations over China based on CMIP5 multi-model ensemble projections[J].Journal of Geophysical Research: Atmospheres, 119(10): 5767-5786.
[4]ThomasT R, NichollsN, GhaziA, 1999.CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes[J].Climate Change, 42(1): 3-7.
[5]GaoX J, XuY, ZhaoZ C, alet, 2006.On the role of resolution and topography in the simulation of East Asia precipitation[J].Theoretical and Applied Climatology, 86(1): 173-185.
[6]HaarsmaR J, RobertsM J, VidaleP L, alet, 2016.High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6[J].Geoscientic Model Development, 9(11): 4185-4208.
[7]HersbachH, BellB, BerrisfordP, alet, 2020.The ERA5 global reanalysis[J].Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049.
[8]HeS C, YangJ, BaoQ, alet, 2019.Fidelity of the observational/reanalysis datasets and global climate models in representation of Extreme Precipitation in East China[J].Journal of Climate, 32(1): 195-212.
[9]LiJ, YuR C, YuanW H, alet, 2015.Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions[J].Journal of Advances in Modeling Earth Systems, 7(2): 774-790.
[10]LiN N, LiJ, RongX Y, alet, 2020.Obtaining More Information about precipitation biases over East Asia from hourly-scale evaluation of model simulation[J].Journal of Meteorological Research, 34(3): 515-528.
[11]MahajanS, EvansK J, BranstetterM, alet, 2015.Fidelity of Precipitation Extremes in High Resolution Global Climate Simulations[J].Procedia Computer Science, 51: 2178-2187.
[12]MalS, SinghR B, HuggelC, alet, 2018.Introducing linkages between climate change, extreme events, and disaster risk reduction[C]//Mal S, Singh R B, Huggel.Climate change, extreme events and disaster risk reduction: towards sustainable development goals.Cham: Springer International Publishing, 1-14.
[13]OuT H, ChenD L, LinderholmH W, alet, 2013.Evaluation of global climate models in simulating extreme precipitation in China[J].Tellus A: Dynamic Meteorology and Oceanography, 65(1), 19799, DOI: 10.3402/tellusa.v65i0.19799.
[14]SkofronickJ G, PetersenW A, BergW, alet, 2017.The Global Precipitation Measurement (GPM) Mission for science and society[J].Bulletin of the American Meteorological Society, 98(8): 1679-1695.
[15]TaoW C, HuangG, LauW K M, alet, 2020.How can CMIP5 AGCMs’ resolution influence precipitation in mountain areas: the Hengduan Mountains[J].Climate Dynamics, 54(1): 159-172.
[16]TaylorK E, 2001.Summarizing multiple aspects of model performance in a single diagram[J].Journal of Geophysical Research: Atmospheres, 106(D7): 7183-7192.
[17]WangZ Z, ZhanC S, NingL K, alet, 2021.Evaluation of global terrestrial evapotranspiration in CMIP6 models[J].Theoretical and Applied Climatology, 143(1): 521-531.
[18]WuX F, MaoJ Y, 2016.Interdecadal modulation of ENSO-related spring rainfall over South China by the Pacific Decadal Oscillation[J].Climate Dynamics, 47(9): 3203-3220.
[19]XuY, XuC H, 2012.Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models[J], Atmospheric and Oceanic Science Letters, 5(6), 489-494.
[20]YangJ, HeS C, BaoQ, 2021.Convective/large-scale rainfall partitions of tropical heavy precipitation in CMIP6 atmospheric models.Advances in Atmospheric Sciences, 38(6): 1020-2017.
[21]陈晓晨, 徐影, 许崇海, 等, 2014.CMIP5全球气候模式对中国地区降水模拟能力的评估[J].气候变化研究进展, 10(3): 217-225.
[22]江志红, 陈威霖, 宋洁, 等, 2009.7个IPCCAR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估[J].大气科学, 33(1): 109-120.
[23]金妍, 李国平, 2021.爬流和绕流对山地突发性暴雨的影响[J].高原气象, 40(2): 314-323.DOI: 10.7522/j.issn.1000-0534. 2020.00041.
[24]李川, 陈静, 何光碧, 2006.青藏高原东侧陡峭地形对一次强降水天气过程的影响[J].高原气象, 25(3): 442-450.
[25]沈艳, 潘旸, 宇婧婧, 等, 2013.中国区域小时降水量融合产品的质量评估[J].大气科学学报, 36(1): 37-46.
[26]王磊, 包庆, 何编, 2019.CMIP6 高分辨率模式比较计划(HighResMIP)概况与评述[J].气候变化研究进展, 15 (5): 498-502.
[27]吴佳, 高学杰, 2013.一套格点化的中国区域逐日观测资料及与其他资料的对比[J].地球物理学报, 56(4): 1102-1111.
[28]伍清, 蒋兴文, 谢洁, 2017.CMIP5 模式对西南地区气温的模拟能力评估[J].高原气象, 36(2): 358-370.DOI: 10.7522/j.issn. 1000-0534.2016.00046.
[29]肖玉华, 赵静, 蒋丽娟, 2010.数值模式预报性能等地区性特点初步分析[J].暴雨灾害, 29(4): 64-69.
[30]于灏, 周筠珺, 李倩, 等, 2020.基于CMIP5模式对四川盆地湿季降水与极端降水的研究[J].高原气象, 39(1): 68-79.DOI: 10.7522/j.issn.1000-0534.2019.00007.
[31]张武龙, 张井勇, 范广州, 2015.CMIP5 模式对我国西南地区干湿季降水的模拟和预估[J].大气科学, 39(3): 559-570.
[32]钟水新, 2020.地形对降水的影响机理及预报方法研究进展[J].高原气象, 39(5): 1122-1132.DOI: 10.7522/j.issn.1000-0534. 2019.00083.
Outlines

/