Progress of Recent 60 Years Climate Change and Its Environmental Impacts on the Qinghai-Xizang Plateau

  • Yaoxian YANG ,
  • Zeyong HU ,
  • Fuquan LU ,
  • Ying CAI ,
  • Haipeng YU ,
  • Ruixia Guo ,
  • Chunwei FU ,
  • Weiwei FAN ,
  • di WU
Expand
  • 1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Northwest Institute of Eco-Environment and Resources,Lanzhou 730000,Gansu,China
    2. Nagqu Station of Plateau Climate and Environment,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Nagqu 852000,Xizang,China
    3. University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2021-07-21

  Revised date: 2022-01-23

  Online published: 2022-03-17

Abstract

The Qinghai-Xizang Plateau is characterized as one of the key areas of global energy and water cycle and is known as Asian water tower.Climate change of the Qinghai-Xizang Plateau has significant impacts on the environmental changes of the its own and surrounding areas.This paper reviews the facts and mechanisms of recent 60 years’ climate change and its associated environmental impacts, emphasizing surface warming, change of surface radiation, precipitation variability among different seasons and regions, change of surface wind speed and surface environment.Changes of skin temperature, surface air temperature and surface wind speed and associated mechanisms during past decade over the Plateau are also analyzed based on reanalysis and site data.Finally, the issues that need to be solved have been sorted out.The conclusions are as follows: (1) The surface warming over Qinghai-Xizang Plateau was earlier and faster than that along the same latitude in Northern Hemisphere.The elevation-dependence warming and increase of clear sky downward longwave radiation caused by Interdecadal atmospheric humidification are the main causes of Qinghai-Xizang Plateau surface warming.However, the variations of surface temperature during past decade are concentrated on inter-annual scale.(2) Due to the continuous rapid warming of the plateau and the anomalies of sea temperature and atmospheric circulation, the precipitation in different regions and seasons presents various variability.(3) Interdecadal shift of surface wind speed is mainly drwen by the meridional difference in warming between the Qinghai-Xizang plateall and the mid-latitude Eurasian Continent and anomalous atmospheric circulation.(4) Environmental changes on the Qinghai-Xizang Plateau are mainly manifested as lake expansion, permafrost degradation, and advance of vegetation rejuvenation; Since the 1990s, glacier in the western Qinghai-Xizang Plateau have been stabilized or even partially recovered, while, glacier in the southeastern Qinghai-Xizang Plateau continue to retreat.The above results are mainly caused by the dipole pattern that precipitation increased and decreased over western and eastern Qinghai-Xizang Plateau, respectively.Meanwhile, the seasonal and intra-seasonal variations of the Summer Monsoon can be reasonable indicators to the vegetation growth and the spatiotemporal variations of vegetation rejuvenation period.(5) The mechanism and numerical simulation of surface temperature and wind speed changes in different seasons and regions need to be further investigated; performance of temperature and precipitation in climate models needs to the improved; high-resolution numerical simulation and data assimilation based on regional models need to be strengthened urgently.

Cite this article

Yaoxian YANG , Zeyong HU , Fuquan LU , Ying CAI , Haipeng YU , Ruixia Guo , Chunwei FU , Weiwei FAN , di WU . Progress of Recent 60 Years Climate Change and Its Environmental Impacts on the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022 , 41(1) : 1 -10 . DOI: 10.7522/j.issn.1000-0534.2021.00117

References

null
Bao Y T You Q L2019.How do westerly jet streams regulate the winter snow depth over the Tibetan Plateau?[J].Climate Dynamics53(1): 353-370.
null
Chen X Q An S Inouye D W al et2015.Temperature and snowfall trigger alpine vegetation green‐up on the world's roof[J].Global Change Biology21(10): 3635-3646.
null
Curio J D, Scherer, 2016.Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau[J].Earth System Dynamics7(3): 767-782.
null
Duan A M Liu S F Zhao Y al et2018.Atmospheric heat source/sink dataset over the Tibetan Plateau based on satellite and routine meteorological observations[J].Big Earth Data2(2): 179-189.
null
Duan A M Wu G X2009.Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades.Part II: connection with climate warming[J].Journal of Climate22(15): 4197-4212.
null
Duan A M Xiao Z X2015.Does the climate warming hiatus exist over the Tibetan Plateau?[J].Scientific Reports, 5: 13711.
null
Enfield D B.Mestass-Nu?ez A M, Trimble P J, 2001.The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S.[J].Geophysical Research Letters28(10): 2077-2080.
null
Felix N Wille C Ma Y M al et2021.Winter daytime warming and shift in summer monsoon increase plant cover and net CO2 uptake in a central Tibetan alpine steppe ecosystem[J].Journal of Geophysical Research: Biogeosciences, 126, e2021JG006441.
null
Gao K L Duan A M Chen D L2021.Interdecadal summer warming of the Tibetan Plateau potentially regulated by a sea surface temperature anomaly in the Labrador Sea[J].International Journal of Climatology41(S1): 2633-2643.
null
Gao K L Duan A M Chen D L al et2019.Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earth's three poles in recent decades[J].Science Bulletin64(16): 1140-1143.
null
Gao Y H Chen F Lettenmaier D P al et2018.Does elevation dependent warming hold true above 5000 m elevation Lessons from the Tibetan Plateau[J].Climate and Atmospheric Science1(1): 19.
null
Guo D L Nick P Yang K al et2021.Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau[J].Science Bulletin, 66(11) 1146-1150.
null
Han Y Z Ma W Q Yang Y X al et2021.Impacts of the Silk Road pattern on the interdecadal variations of the atmospheric heat source over the Tibetan Plateau[J].Atmospheric Research 2: 105696.
null
He Y L Wang W L Huang J P al et2021.The mechanism of increasing summer water vapor over the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 126: e2020JD034166.
null
Hersbach H Bell B Berrisford P al et2020.The ERA5 global reanalysis[J].Quarterly Journal of the Royal Meteorological Society146(730): 1999-2049.
null
Hu S Zhou T J Wu B2021.Impact of developing ENSO on the Tibetan Plateau summer rainfall[J].Journal of Climate34(9): 3385-3400.
null
Huang X D Deng J Wang W, et al.2017.Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau [J].Remote Sensing of Environment190: 274-288.
null
Immerzeel W W van Beek L P H Bierkens M2010.Climate Change will affect the Asian water towers[J].Science328(5984), 1382-1385.
null
Jiang Y Q Yang X Q Liu X H al et2017.Anthropogenic aerosol effects on East Asian winter monsoon: The role of black carbon induced Tibetan Plateau warming[J].Journal of Geophysical Research: Atmospheres122(11): 5883-5902.
null
Jin H J He R X Cheng G D al et2009.Changes in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts[J].Environmental Research Letters4(4): 045206.
null
Kang S C Zhang Q G Qian Y al et2019.Linking atmospheric pollution to cryospheric change in the Third Pole region[J].National Science Review6(4): 796-809.
null
Kang S C Zhang Y L Qian Y al et2020.A review of black carbon in snow and ice and its impact on the cryosphere[J].Earth Science Reviews, 210: 103346.
null
Lei Y B Zhu Y L Wang B al et2019.Extreme lake level changes on the Tibetan Plateau associated with the 2015/2016 El-Ni?o[J].Geophysical Research Letters46(11): 5889-5898.
null
Li X Zhang L Luo T X2020.Rainy season onset mainly drives the spatiotemporal variability of spring vegetation green-up across alpine dry ecosystems on the Tibetan Plateau[J].Scientific Reports10(1): 18797.
null
Li Y Wang C H Su F G2021.Evaluation of CMIP6 Models over two third pole subregions withe contrasting circulation systems[J].Journal of climate34(22): 9133-9152.
null
Lin C G Yang K Qin J al et2013.Observed coherent trends of surface and upper-air wind speed over China since 1960[J].Journal of Climate.26(9): 2891-2903.
null
Liu X D Chen B D2000.Climatic warming in the Tibetan Plateau during recent decades[J].International Journal of Climatology20(14): 1729-1742.
null
Liu X D Cheng Z G Yan L B al et2009.Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings[J].Global & Planetary Change68(3): 164-174.
null
Liu X L Liu Y M Wang X C al et2020.Large‐scale dynamics and moisture sources of the precipitation over the western Tibetan Plateau in boreal winter[J].Journal of Geophysical Research: Atmospheres125(9): e2019JD032133.
null
Liu Y M Wu G X Hong J L al et2012.Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II.Change[J].Climate Dynamics39(5): 1183-1195.
null
Luo S Q Wang J Y Pomeroy J W al et2020.Freeze-thaw changes of seasonally frozen ground on the Tibetan Plateau from 1960 to 2014[J].Journal of Climate33(21): 1-57.
null
Ming J Xiao C D Cachier H, et al.2009.Black carbon (BC) in the snow of glaciers in west China and its potential effects on albedos [J].Atmospheric Research92 (1): 114-123.
null
Ouyang L Yang K Lu H al et2020.Ground-based observations reveal unique valley precipitation patterns in the central Himalaya[J].Journal of Geophysical Research: Atmospheres: 125(5): e2019JD031502.
null
Piao S L Liu Q Chen A P al et2019.Plant phenology and global climate change: Current progresses and challenges[J].Global Change Biology25(6): 1922-1940.
null
Qin J Yang K Liang S L al et2009.The altitudinal dependence of recent rapid warming over the Tibetan Plateau[J].Climatic Change97(1/2): 321-327.
null
Ramanathan V Ramana M V Roberts G al et2007.Warming trends in Asia amplified by brown cloud solar absorption[J].Nature448(7153): 575-578.
null
Rangwala I Miller J R Ming X2009.Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor[J].Geophysical Research Letters36(6): L06703.
null
Ren Y H Yang K Wang H al et2021.The South Asia monsoon break promotes grass growth on the Tibetan Plateau[J].Journal of Geophysical Research: Biogeosciences, 126, e2020JG005951.
null
Su J Y Duan A M Xu H M2017.Quantitative analysis of surface warming amplification over the Tibetan Plateau after the late 1990s using surface energy balance equation[J].Atmospheric Science Letters18(3): 112-117.
null
Sun J Yang K Wang Y al et2020.Why has the Inner Tibetan Plateau become wetter since the mid-1990s?[J].Journal of Climate33(19): 8507-8522.
null
Tang W J Yang K Qin J al et2011.Solar radiation trend across China in recent decades: a revisit with quality-controlled data[J].Atmospheric Chemistry and Physics11(1): 393-406.
null
Wang C H Zhao W Cui Y2020.Changes in the seasonally frozen ground over the eastern Qinghai-Tibet Plateau in the past 60 years[J].Frontiers in Earth Science, 8: 270.
null
Wang T H Yang H B Yang D W al et2018.Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework[J].Journal of Hydrology, 558: 301-313.
null
Xu B Q Cao J J Hansen J al et2009.Black soot and the survival of Tibetan glaciers[J].Proceedings of the National Academy of Sciences of the United States of America106(52): 22114-22118.
null
Xu X D Lu C G Shi X H al et2008.World water tower: An atmospheric perspective[J].Geophysical Research Letters35(20): L20815.
null
Xun X Y Hu Z Y Ma Y M2012.The dynamic Plateau Monsoon Index and its association with general circulation anomalies[J].Advances in Atmospheric Sciences29(6): 1249-1263.
null
Yang K Wang C H2019.Seasonal persistence of soil moisture anomalies related to freeze-thaw over the Tibetan Plateau and prediction signal of summer precipitation in eastern China[J].Climate Dynamics53(3/4): 2411-2424.
null
Yang K Ding B H Qin J al et2012.Can aerosol loading explain the solar dimming over the Tibetan Plateau?[J].Geophysical Research Letters39(20): L20710.
null
Yang K Wu H Qin J al et2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J].Global and Planetary Change, 112: 79-91.
null
Yao T D Thompson L Yang W2012.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J].Nature Climate Change2(9): 663-667.
null
Yao T D Xue Y K Chen D L al et2019.Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multi-disciplinary approach with observations, modeling, and analysis [J].Bulletin of the American Meteorological Society100(3), 423-444.
null
Yuan T G Chen S Y Wang L al et2020.Impacts of two East Asian atmospheric circulation modes on black carbon aerosol over the Tibetan Plateau in winter[J].Journal of Geophysical Research: Atmospheres125(12): e2020JD032458.
null
Zhang C Tang Q Chen D L al et2019.Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau[J].Journal of Hydrometeorology20(2): 217-229.
null
Zhang G Q Yao T d Xie H J al et2020.Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms[J].Earth-Science Reviews, 208: 103269.
null
Zhang W X Zhou T J Zhang L X2017.Wetting and greening Tibetan Plateau in early summer in recent decades[J].Journal of Geophysical Research: Atmospheres122(11): 5808-5822.
null
Zhong L Ma Y M Xue Y K al et2019.Climate change trends and impacts on vegetation greening over the Tibetan Plateau[J].Journal of Geophysical Research Atmospheres124(14): 7540-7552.
null
Zhou C Y Zhao P Chen J M2019.The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms[J].Journal of Climate32(13): 4103-4119.
null
Zuo Z Y Zhang R H Zhao P2011.The relation of vegetation over the Tibetan Plateau to rainfall in China during the boreal summer[J].Climate Dynamics36(5-6): 1207-1219.
null
蔡英, 李栋梁, 汤懋苍, 等, 2003.青藏高原近50年来气温的年代际变化[J].高原气象22(5): 464-470.
null
除多, 杨勇, 罗布坚参, 等, 2015.1981-2010年青藏高原积雪日数时空变化特征分析[J].冰川冻土37(6): 1461-1472.
null
丁一汇, 2018.全球气候变化风险不断加剧的背景下, 中国的可持续性管理和行动[J].Engineering4(3): 12-21.
null
段安民, 肖志祥, 王子谦.2018.青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展[J].大气科学42 (4): 755-766.
null
李栋梁, 钟海玲, 吴青柏, 等, 2005.青藏高原地表温度的变化分析[J].高原气象24(3): 291-298.
null
李红梅, 马玉寿, 王彦龙, 2010.气候变暖对青海高原地区植物物候期的影响[J].应用气象学报21(4): 500-505.
null
马晓波, 胡泽勇, 2005.青藏高原40年来降水变化趋势及突变的分析[J].中国沙漠25(1): 137-139.
null
马晓波, 李栋梁, 2003.青藏高原近代气温变化趋势及突变分析[J].高原气象22(5): 507-512.
null
马耀明, 胡泽勇, 田立德, 等, 2014.青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J].地球科学进展29(2): 207-215.
null
朴世龙, 张宪洲, 汪涛, 等, 2019.青藏高原生态系统对气候变化的响应及其反馈[J].科学通报64(27): 2842-2855.
null
祁如英, 王启兰, 申红艳, 2006.青海草本植物物候期变化与气象条件影响分析[J].气象科技34(3): 306-310.
null
汤懋苍, 沈志宝, 陈有虞, 1979.高原季风的平均气候特征[J].地理学报34(1): 33-42.
null
韦志刚, 黄荣辉, 董文杰, 2003.青藏高原气温和降水的年际和年代际变化[J].大气科学27(2): 157-170.
null
邬光剑, 姚檀栋, 王伟财, 等, 2019.青藏高原及周边地区的冰川灾害[J].中国科学院院刊34(11): 1285-1292.
null
邢宇, 2015.青藏高原32年湿地对气候变化的空间响应[J].国土资源遥感27(3): 99-107.
null
徐丽娇, 胡泽勇, 赵亚楠, 等, 2019.1961-2010年青藏高原气候变化特征分析[J].高原气象38(5): 911-919.DOI: 10.7522/j.issn.1000-0534.2018.00137.
null
许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象39(2): 234-244.DOI: 10. 7522/j.issn.1000-0534.2019.00029.
null
姚檀栋, 余武生, 邬光剑, 等, 2019.青藏高原及周边地区近期冰川状态失常与灾变风险[J].科学通报64(27): 2770-2782.
null
游庆龙, 康世昌, 李剑东, 等, 2021.青藏高原气候变化若干前沿科学问题[J].冰川冻土43(3): 885-901.
Outlines

/