null | Bao Y T, You Q L, 2019.How do westerly jet streams regulate the winter snow depth over the Tibetan Plateau?[J].Climate Dynamics, 53(1): 353-370. |
null | Chen X Q, An S, Inouye D W, al et, 2015.Temperature and snowfall trigger alpine vegetation green‐up on the world's roof[J].Global Change Biology, 21(10): 3635-3646. |
null | Curio J D, Scherer, 2016.Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau[J].Earth System Dynamics, 7(3): 767-782. |
null | Duan A M, Liu S F, Zhao Y, al et, 2018.Atmospheric heat source/sink dataset over the Tibetan Plateau based on satellite and routine meteorological observations[J].Big Earth Data, 2(2): 179-189. |
null | Duan A M, Wu G X, 2009.Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades.Part II: connection with climate warming[J].Journal of Climate, 22(15): 4197-4212. |
null | Duan A M, Xiao Z X, 2015.Does the climate warming hiatus exist over the Tibetan Plateau?[J].Scientific Reports, 5: 13711. |
null | Enfield D B.Mestass-Nu?ez A M, Trimble P J, 2001.The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S.[J].Geophysical Research Letters, 28(10): 2077-2080. |
null | Felix N, Wille C, Ma Y M, al et, 2021.Winter daytime warming and shift in summer monsoon increase plant cover and net CO2 uptake in a central Tibetan alpine steppe ecosystem[J].Journal of Geophysical Research: Biogeosciences, 126, e2021JG006441. |
null | Gao K L, Duan A M, Chen D L, 2021.Interdecadal summer warming of the Tibetan Plateau potentially regulated by a sea surface temperature anomaly in the Labrador Sea[J].International Journal of Climatology, 41(S1): 2633-2643. |
null | Gao K L, Duan A M, Chen D L, al et, 2019.Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earth's three poles in recent decades[J].Science Bulletin, 64(16): 1140-1143. |
null | Gao Y H, Chen F, Lettenmaier D P, al et, 2018.Does elevation dependent warming hold true above 5000 m elevation Lessons from the Tibetan Plateau[J].Climate and Atmospheric Science, 1(1): 19. |
null | Guo D L, Nick P, Yang K, al et, 2021.Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau[J].Science Bulletin, 66(11) 1146-1150. |
null | Han Y Z, Ma W Q, Yang Y X, al et, 2021.Impacts of the Silk Road pattern on the interdecadal variations of the atmospheric heat source over the Tibetan Plateau[J].Atmospheric Research 2: 105696. |
null | He Y L, Wang W L, Huang J P, al et, 2021.The mechanism of increasing summer water vapor over the Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres, 126: e2020JD034166. |
null | Hersbach H, Bell B, Berrisford P, al et, 2020.The ERA5 global reanalysis[J].Quarterly Journal of the Royal Meteorological Society, 146(730): 1999-2049. |
null | Hu S, Zhou T J, Wu B, 2021.Impact of developing ENSO on the Tibetan Plateau summer rainfall[J].Journal of Climate, 34(9): 3385-3400. |
null | Huang X D, Deng J, Wang W, et al.2017.Impact of climate and elevation on snow cover using integrated remote sensing snow products in Tibetan Plateau [J].Remote Sensing of Environment, 190: 274-288. |
null | Immerzeel W W, van Beek L P H, Bierkens M, 2010.Climate Change will affect the Asian water towers[J].Science, 328(5984), 1382-1385. |
null | Jiang Y Q, Yang X Q, Liu X H, al et, 2017.Anthropogenic aerosol effects on East Asian winter monsoon: The role of black carbon induced Tibetan Plateau warming[J].Journal of Geophysical Research: Atmospheres, 122(11): 5883-5902. |
null | Jin H J, He R X, Cheng G D, al et, 2009.Changes in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts[J].Environmental Research Letters, 4(4): 045206. |
null | Kang S C, Zhang Q G, Qian Y, al et, 2019.Linking atmospheric pollution to cryospheric change in the Third Pole region[J].National Science Review, 6(4): 796-809. |
null | Kang S C, Zhang Y L, Qian Y, al et, 2020.A review of black carbon in snow and ice and its impact on the cryosphere[J].Earth Science Reviews, 210: 103346. |
null | Lei Y B, Zhu Y L, Wang B, al et, 2019.Extreme lake level changes on the Tibetan Plateau associated with the 2015/2016 El-Ni?o[J].Geophysical Research Letters, 46(11): 5889-5898. |
null | Li X, Zhang L, Luo T X, 2020.Rainy season onset mainly drives the spatiotemporal variability of spring vegetation green-up across alpine dry ecosystems on the Tibetan Plateau[J].Scientific Reports, 10(1): 18797. |
null | Li Y, Wang C H, Su F G, 2021.Evaluation of CMIP6 Models over two third pole subregions withe contrasting circulation systems[J].Journal of climate, 34(22): 9133-9152. |
null | Lin C G, Yang K, Qin J, al et, 2013.Observed coherent trends of surface and upper-air wind speed over China since 1960[J].Journal of Climate.26(9): 2891-2903. |
null | Liu X D, Chen B D, 2000.Climatic warming in the Tibetan Plateau during recent decades[J].International Journal of Climatology, 20(14): 1729-1742. |
null | Liu X D, Cheng Z G, Yan L B, al et, 2009.Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings[J].Global & Planetary Change, 68(3): 164-174. |
null | Liu X L, Liu Y M, Wang X C, al et, 2020.Large‐scale dynamics and moisture sources of the precipitation over the western Tibetan Plateau in boreal winter[J].Journal of Geophysical Research: Atmospheres, 125(9): e2019JD032133. |
null | Liu Y M, Wu G X, Hong J L, al et, 2012.Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II.Change[J].Climate Dynamics, 39(5): 1183-1195. |
null | Luo S Q, Wang J Y, Pomeroy J W, al et, 2020.Freeze-thaw changes of seasonally frozen ground on the Tibetan Plateau from 1960 to 2014[J].Journal of Climate, 33(21): 1-57. |
null | Ming J, Xiao C D, Cachier H, et al.2009.Black carbon (BC) in the snow of glaciers in west China and its potential effects on albedos [J].Atmospheric Research, 92 (1): 114-123. |
null | Ouyang L, Yang K, Lu H, al et, 2020.Ground-based observations reveal unique valley precipitation patterns in the central Himalaya[J].Journal of Geophysical Research: Atmospheres: 125(5): e2019JD031502. |
null | Piao S L, Liu Q, Chen A P, al et, 2019.Plant phenology and global climate change: Current progresses and challenges[J].Global Change Biology, 25(6): 1922-1940. |
null | Qin J, Yang K, Liang S L, al et, 2009.The altitudinal dependence of recent rapid warming over the Tibetan Plateau[J].Climatic Change, 97(1/2): 321-327. |
null | Ramanathan V, Ramana M V, Roberts G, al et, 2007.Warming trends in Asia amplified by brown cloud solar absorption[J].Nature, 448(7153): 575-578. |
null | Rangwala I, Miller J R, Ming X, 2009.Warming in the Tibetan Plateau: Possible influences of the changes in surface water vapor[J].Geophysical Research Letters, 36(6): L06703. |
null | Ren Y H, Yang K, Wang H, al et, 2021.The South Asia monsoon break promotes grass growth on the Tibetan Plateau[J].Journal of Geophysical Research: Biogeosciences, 126, e2020JG005951. |
null | Su J Y, Duan A M, Xu H M, 2017.Quantitative analysis of surface warming amplification over the Tibetan Plateau after the late 1990s using surface energy balance equation[J].Atmospheric Science Letters, 18(3): 112-117. |
null | Sun J, Yang K, Wang Y, al et, 2020.Why has the Inner Tibetan Plateau become wetter since the mid-1990s?[J].Journal of Climate, 33(19): 8507-8522. |
null | Tang W J, Yang K, Qin J, al et, 2011.Solar radiation trend across China in recent decades: a revisit with quality-controlled data[J].Atmospheric Chemistry and Physics, 11(1): 393-406. |
null | Wang C H, Zhao W, Cui Y, 2020.Changes in the seasonally frozen ground over the eastern Qinghai-Tibet Plateau in the past 60 years[J].Frontiers in Earth Science, 8: 270. |
null | Wang T H, Yang H B, Yang D W, al et, 2018.Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework[J].Journal of Hydrology, 558: 301-313. |
null | Xu B Q, Cao J J, Hansen J, al et, 2009.Black soot and the survival of Tibetan glaciers[J].Proceedings of the National Academy of Sciences of the United States of America, 106(52): 22114-22118. |
null | Xu X D, Lu C G, Shi X H, al et, 2008.World water tower: An atmospheric perspective[J].Geophysical Research Letters, 35(20): L20815. |
null | Xun X Y, Hu Z Y, Ma Y M, 2012.The dynamic Plateau Monsoon Index and its association with general circulation anomalies[J].Advances in Atmospheric Sciences, 29(6): 1249-1263. |
null | Yang K, Wang C H, 2019.Seasonal persistence of soil moisture anomalies related to freeze-thaw over the Tibetan Plateau and prediction signal of summer precipitation in eastern China[J].Climate Dynamics, 53(3/4): 2411-2424. |
null | Yang K, Ding B H, Qin J, al et, 2012.Can aerosol loading explain the solar dimming over the Tibetan Plateau?[J].Geophysical Research Letters, 39(20): L20710. |
null | Yang K, Wu H, Qin J, al et, 2014.Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J].Global and Planetary Change, 112: 79-91. |
null | Yao T D, Thompson L, Yang W, 2012.Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J].Nature Climate Change, 2(9): 663-667. |
null | Yao T D, Xue Y K, Chen D L, al et, 2019.Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multi-disciplinary approach with observations, modeling, and analysis [J].Bulletin of the American Meteorological Society, 100(3), 423-444. |
null | Yuan T G, Chen S Y, Wang L, al et, 2020.Impacts of two East Asian atmospheric circulation modes on black carbon aerosol over the Tibetan Plateau in winter[J].Journal of Geophysical Research: Atmospheres, 125(12): e2020JD032458. |
null | Zhang C, Tang Q, Chen D L, al et, 2019.Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau[J].Journal of Hydrometeorology, 20(2): 217-229. |
null | Zhang G Q, Yao T d, Xie H J, al et, 2020.Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms[J].Earth-Science Reviews, 208: 103269. |
null | Zhang W X, Zhou T J, Zhang L X, 2017.Wetting and greening Tibetan Plateau in early summer in recent decades[J].Journal of Geophysical Research: Atmospheres, 122(11): 5808-5822. |
null | Zhong L, Ma Y M, Xue Y K, al et, 2019.Climate change trends and impacts on vegetation greening over the Tibetan Plateau[J].Journal of Geophysical Research Atmospheres, 124(14): 7540-7552. |
null | Zhou C Y, Zhao P, Chen J M, 2019.The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms[J].Journal of Climate, 32(13): 4103-4119. |
null | Zuo Z Y, Zhang R H, Zhao P, 2011.The relation of vegetation over the Tibetan Plateau to rainfall in China during the boreal summer[J].Climate Dynamics, 36(5-6): 1207-1219. |
null | 蔡英, 李栋梁, 汤懋苍, 等, 2003.青藏高原近50年来气温的年代际变化[J].高原气象, 22(5): 464-470. |
null | 除多, 杨勇, 罗布坚参, 等, 2015.1981-2010年青藏高原积雪日数时空变化特征分析[J].冰川冻土, 37(6): 1461-1472. |
null | 丁一汇, 2018.全球气候变化风险不断加剧的背景下, 中国的可持续性管理和行动[J].Engineering, 4(3): 12-21. |
null | 段安民, 肖志祥, 王子谦.2018.青藏高原冬春积雪和地表热源影响亚洲夏季风的研究进展[J].大气科学, 42 (4): 755-766. |
null | 李栋梁, 钟海玲, 吴青柏, 等, 2005.青藏高原地表温度的变化分析[J].高原气象, 24(3): 291-298. |
null | 李红梅, 马玉寿, 王彦龙, 2010.气候变暖对青海高原地区植物物候期的影响[J].应用气象学报, 21(4): 500-505. |
null | 马晓波, 胡泽勇, 2005.青藏高原40年来降水变化趋势及突变的分析[J].中国沙漠, 25(1): 137-139. |
null | 马晓波, 李栋梁, 2003.青藏高原近代气温变化趋势及突变分析[J].高原气象, 22(5): 507-512. |
null | 马耀明, 胡泽勇, 田立德, 等, 2014.青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J].地球科学进展, 29(2): 207-215. |
null | 朴世龙, 张宪洲, 汪涛, 等, 2019.青藏高原生态系统对气候变化的响应及其反馈[J].科学通报, 64(27): 2842-2855. |
null | 祁如英, 王启兰, 申红艳, 2006.青海草本植物物候期变化与气象条件影响分析[J].气象科技, 34(3): 306-310. |
null | 汤懋苍, 沈志宝, 陈有虞, 1979.高原季风的平均气候特征[J].地理学报, 34(1): 33-42. |
null | 韦志刚, 黄荣辉, 董文杰, 2003.青藏高原气温和降水的年际和年代际变化[J].大气科学, 27(2): 157-170. |
null | 邬光剑, 姚檀栋, 王伟财, 等, 2019.青藏高原及周边地区的冰川灾害[J].中国科学院院刊, 34(11): 1285-1292. |
null | 邢宇, 2015.青藏高原32年湿地对气候变化的空间响应[J].国土资源遥感, 27(3): 99-107. |
null | |
null | |
null | 姚檀栋, 余武生, 邬光剑, 等, 2019.青藏高原及周边地区近期冰川状态失常与灾变风险[J].科学通报, 64(27): 2770-2782. |
null | 游庆龙, 康世昌, 李剑东, 等, 2021.青藏高原气候变化若干前沿科学问题[J].冰川冻土, 43(3): 885-901. |