Characteristic Analysis of the Spatio-temporal Distribution of Key Variables during the Soil Freeze-thaw Process over the Qinghai-Xizang Plateau

  • Wenhui LIU ,
  • Jun WEN ,
  • Jinlei CHEN ,
  • Zuoliang WANG ,
  • Xuancheng LU ,
  • Yueyue WU ,
  • Yuqin JIANG
Expand
  • 1. College of Atmospheric Sciences,Chengdu University of Information Technology/Sichuan Key Laboratory of Plateau Atmosphere and Environment,Chengdu 610225,Sichuan,China
    2. State Key Laboratory of Cryosphere Sciences,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China
    3. Northwest Institute of Ecological Environment and Resources,Chinese Academy of Sciences/Key Laboratory of Land Surface Process and Climate Change in the Cold and Arid Region of the Chinese Academy of Sciences,Lanzhou 730000,Gansu,China

Received date: 2020-11-13

  Revised date: 2021-03-29

  Online published: 2022-03-17

Abstract

The freeze-thaw process is one of the most prominent features of the land surface process on the Qinghai-Xizang Plateau, and quantifying the variation of the key variables that denote the soil freeze-thaw process has scientific significance for understanding the climate change, hydrological processes and ecosystems of the Qinghai-Tibetan Plateau.By using the ECMWF/ERA5 (European Centre for Medium-Range Weather Forecasts/ERA5) reanalyzed soil temperature, volumetric soil water and air temperature data, the temporal and spatial trends of the start date of soil freezing, the start date of soil thawing and the duration of the soil freezing and their relationships with the air temperature and altitude were investigated by using linear regression, Mann-Kendall test, moving t test and correlation analysis.These results demonstrated that the spatial distribution of soil freeze-thaw process in the Qinghai-Xizang Plateau is characterized by a trend of delaying freeze, advancing thaw and shortening freeze from the northwest to the southeast.The soil freeze-thaw process varied significantly on the Qinghai-Xizang Plateau from 1979 to 2018.The start date of soil freezing was delayed by 14.0 days with a rate of 0.17 d·a-1, and the start date of soil thawing was advanced by 11.0 days with a rate of 0.07 d·a-1, and the duration of the soil freeze was shortened by 25.0 days with a rate of 0.23 d·a-1 over the past 40 years.The overall trend of soil freeze-thaw process is the same in the Qinghai-Xizang Plateau, while the local rate is different.Throughout the period of study, the duration of the soil freeze in the southern and the northern Changtang Plateau is shortened by 47.2 days and 32.9 days.The first date of the soil freeze, the first date of the soil thaw and the duration of the soil freeze are significantly correlated with temperature and altitude.If the air temperature rises by 1.0 ℃, the first date of the soil freeze will be delayed by 5.2 days, and the first date of the soil thaw will be advanced by 4.5 days, so that the duration of the soil freeze will be shortened by 9.8 days.In the high cold Tibetan climatological zone, the first date of the soil freeze will be advanced by 9.1 days, and the first date of the soil thaw will be delayed by 4.9 days, while the duration of the soil freeze will be increased by 13.9 days as the altitude increases by 1000.0 m.

Cite this article

Wenhui LIU , Jun WEN , Jinlei CHEN , Zuoliang WANG , Xuancheng LU , Yueyue WU , Yuqin JIANG . Characteristic Analysis of the Spatio-temporal Distribution of Key Variables during the Soil Freeze-thaw Process over the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022 , 41(1) : 11 -23 . DOI: 10.7522/j.issn.1000-0534.2021.00024

References

null
Cheng G D Wu T H2007.Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau[J].Journal of Geophysical Research Earth Surface, 112: F02S03.
null
Cheng M L Zhong L Ma Y M al et2019.A study on the assessment of multi-source satellite soil moisture products and reanalysis data for the Tibetan Plateau[J].Remote Sensing11(10): 1196.
null
Frauenfeld O W Zhang T J Mccreight J L2007.Northern Hemisphere freezing/thawing index variations over the twentieth century[J].International Journal of Climatology27(1): 47-63.
null
Gardner A S Moholdt G Cogley J G al et2013.A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J].Science340(6134): 852-857.
null
Guo D L Wang H J2014.Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010[J].Chinese Science Bulletin59(20): 2439-2448.
null
Guo D L Yang M X Wang H J2011.Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau [J].Hydrological Processes25(16): 2531-2541.
null
Henry H A L2008.Climate change and soil freezing dynamics: historical trends and projected changes[J].Climatic Change87(3-4): 421-434.
null
Hinkel K M Paetzold F Nelson F E al et2001.Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993-1999[J].Global and Planetary Change29(3-4): 293-309.
null
Hu G J Zhao L Wu X D al et2019.Evaluation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau[J].Theoretical and Applied Climatology138(3): 1457–1470.
null
Huang J P Guan X D Ji F2012.Enhanced cold-season warming in semi-arid regions[J].Atmospheric Chemistry and Physics12(272): 5391-5398.
null
Huang J P Yu H P Guan X D al et2016.Accelerated dryland expansion under climate change[J].Nature Climate Change6(2): 166-171.
null
Jin R Li X Che T2009.A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature[J].Remote Sensing of Environment113(12): 2651-2660.
null
Jorgenson M T Racine C H Walters J C al et2001.Permafrost degradation and ecological changes associated with a warming climate in central Alaska[J].Climate Change48(4): 551-579.
null
Kaser G Grosshauser M Marzeion B al et2010.Contribution potential of glaciers to water availability in different climate regimes[J].Proceedings of the National Academy of Sciences of the United States of America107(47): 20223-20227.
null
Li X Jin R Pan X D al et2012.Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau[J].International Journal of Applied Earth Observation and Geoinformation17(1): 33-42.
null
Menzel A Jakobi G Ahas R al et2003.Variations of the climatological growing season (1951-2000) in Germany compared with other countries[J].International Journal of Climatology23(7): 793-812.
null
Mukhopadhyay B Khan A2015.A reevaluation of the snowmelt and glacial melt in river flows within Upper Indus Basin and its significance in a changing climate[J].Journal of Hydrology527(1): 119-132.
null
Qin J Liang S L Yang K al et2009.Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal[J].Journal of Geophysical Research: Atmospheres, 114, D15103.DOI: 10.1029/2008JD011358.
null
Shen M G Piao S L Cong N al et2015.Precipitation impacts on vegetation spring phenology on the Tibetan Plateau[J].Global Change Biology21(10): 3647-3656.
null
Sinha T Cherkauer K A2008.Time Series Analysis of soil freeze and thaw processes in Indiana[J].Journal of Hydrometeorology9(5): 936-950.
null
Smith N V Saatchi S S Randerson J T2004.Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002[J].Journal of Geophysical Research: Atmospheres109(D12): D12101.
null
Su Z B Rosnay P D Wen J al et2013.Evaluation of ECMWF's soil moisture analyses using observations on the Tibetan Plateau[J].Journal of Geophysical Research118(11): 5304-5318.
null
Su Z B Wen J Dente L al et2011.The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products[J].Hydrology and Earth System Sciences15(7): 2303-2316.
null
Su Z B, 阳坤, 2019.青藏高原土壤温湿度逐时观测数据集(2008-2016)[DS/OL].国家青藏高原科学数据中心, 2019.DOI: 10. 11888/Soil.tpdc.270110.CSTR: 18046.11.Soil.tpdc.270110.
null
van der Velde R Su Z B van Oevelen P al et2012.Soil moisture mapping over the central part of the Tibetan Plateau using a series of ASAR WS images[J].Remote Sensing of Environment, 120: 175-187.DOI: 10.1016/j.rse.2011.05.029.
null
Wang C H Yang K Zhang F M2020.Impacts of soil freeze-thaw process and snow melting over Tibetan Plateau on Asian summer monsoon system: A review and perspective[J].Frontiers in Earth Science, 8: 133.DOI: 10.3389/feart.2020.00133.
null
Wang J Y Luo S Q Li Z G al et2019.The freeze/thaw process and the surface energy budget of the seasonally frozen ground in the source region of the Yellow River[J].Theoretical and Applied Climatology138(3): 1631-1646.
null
Wang K Zhang T Zhong X H2015.Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China[J].The Cryosphere9(3): 1321-1331.
null
Xie Z H Song L Y Feng X B2008.A moving boundary problem derived from heat and water transfer processes in frozen and thawed soils and its numerical simulation[J].Science in China(A)51(8): 1510-1521.
null
Zhang L L Su F G Yang D Q al et2013.Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau[J].Journal of Geophysical Research: Atmospheres118(15): 8500-8518.
null
Zou D Zhao L Sheng Y al et2017.A new map of the permafrost distribution on the Tibetan Plateau[J].Cryosphere Discussions11(6): 2527-2542.
null
蔡林彤, 方雪薇, 吕世华, 等, 2021.青藏高原中部冻融强度变化及其与气温的关系[J].高原气象40(2): 244-256.DOI: 10. 7522/j.issn.1000-0534.2020.00073.
null
陈渤黎, 罗斯琼, 吕世华, 等, 2017.基于CLM模式的青藏高原土壤冻融过程陆面特征研究[J].冰川冻土39(4): 760-770.
null
高荣, 韦志刚, 董文杰, 2003.青藏高原土壤冻结始日和终日的年际变化[J].冰川冻土, 1: 49-54.
null
李韧, 赵林, 丁永建, 等, 2012.青藏公路沿线多年冻土区活动层动态变化及区域差异特征[J].科学通报57(30): 2864-2871.
null
李述训, 南卓铜, 赵林, 2002a.冻融作用对地气系统能量交换的影响分析[J].冰川冻土24(5): 506-511.
null
李述训, 南卓铜, 赵林, 2002b.冻融作用对系统与环境间能量交换的影响[J].冰川冻土24(2): 109-115.
null
李卫朋, 范继辉, 沙玉坤, 等, 2014.藏北高寒草原土壤温度变化与冻融特征[J].山地学报32(4): 407-416.
null
刘明浩, 孙志忠, 牛富俊, 等, 2014.气候变化背景下青藏铁路沿线多年冻土变化特征研究[J].冰川冻土36(5): 1122-1130.
null
刘双, 谢正辉, 高骏强, 等, 2018.高寒生态脆弱区冻土碳水循环对气候变化的响应——以甘南州为例[J].高原气象37(5): 1177-1187.DOI: 10.7522/j.issn.1000-0534.2018.00016.
null
刘源, 秦军, 阳坤, 等, 2018.3种土壤冻融判别算法在青藏高原的分类精度评价[J].地球信息科学学报20(8): 1178-1189.
null
罗斯琼, 张宇, 吕世华, 2008.黄土高原砂壤土冻融过程的观测和模拟[J].冰川冻土30(2): 234-243.
null
吕少宁, 李栋梁, 文军, 等, 2010.全球变暖背景下青藏高原气温周期变化与突变分析[J].高原气象29(6): 1378-1385.
null
朴世龙, 张宪洲, 汪涛, 等, 2019.青藏高原生态系统对气候变化的响应及其反馈[J].科学通报64(27): 2842-2855.
null
丘宝剑, 1989.国家农业地图集[M].北京: 中国地图出版社, 20-21.
null
邱国庆, 程国栋, 1995.中国的多年冻土──过去与现在[J].第四纪研究15(1): 13-22.
null
冉洪伍, 范继辉, 黄菁, 2019.藏北高寒草地土壤冻融过程水热变化特征[J].草业科学36(4): 980-995.
null
王澄海, 董文杰, 韦志刚, 2003.青藏高原季节冻融过程与东亚大气环流关系的研究[J].地球物理学报46(3): 309-316.
null
魏莹, 段克勤, 2020.1980-2016年青藏高原变暖时空特征及其可能影响原因[J].高原气象39(3): 459-466.DOI: 10.7522/j.issn.1000-0534.2019.00121.
null
吴青柏, 董献付, 刘永智, 2005.青藏公路沿线多年冻土对气候变化和工程影响的响应分析[J].冰川冻土27(1): 50-54.
null
徐洪亮, 常娟, 郭林茂, 等, 2021.青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J].高原气象40(2): 229-243.DOI: 10.7522/j.issn.1000-0534.2020.00071.
null
许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029.
null
阳勇, 陈仁升, 2011.冻土水文研究进展[J].地球科学进展26(7): 711-723.
null
杨梅学, 姚檀栋, 何元庆, 2002.青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J].山地学报20(5): 553-558.
null
杨淑华, 吴通华, 李韧, 等, 2018.青藏高原近地表土壤冻融状况的时空变化特征[J].高原气象37(1): 43-53.DOI: 10.7522/j.issn.1000-0534.2017.00043.
null
姚檀栋, 2008.青藏高原及毗邻地区冰川湖泊图[M].西安: 西安地图出版社.
null
姚檀栋, 姚治君, 2010.青藏高原冰川退缩对河水径流的影响[J].自然杂志32(1): 4-8.
null
张廷军, 晋锐, 高峰, 2009.冻土遥感研究进展: 被动微波遥感[J].地球科学进展24(10): 1073-1083.
null
郑度, 张荣祖, 杨勤业, 1979.试论青藏高原的自然地带[J].地理学报34(1): 1-11.
null
周余华, 叶伯生, 胡和平, 2005.土壤冻融条件下的陆面过程研究综述[J].水科学进展16(6): 887-891.
Outlines

/