Characteristic Analysis of the Spatio-temporal Distribution of Key Variables during the Soil Freeze-thaw Process over the Qinghai-Xizang Plateau
Received date: 2020-11-13
Revised date: 2021-03-29
Online published: 2022-03-17
The freeze-thaw process is one of the most prominent features of the land surface process on the Qinghai-Xizang Plateau, and quantifying the variation of the key variables that denote the soil freeze-thaw process has scientific significance for understanding the climate change, hydrological processes and ecosystems of the Qinghai-Tibetan Plateau.By using the ECMWF/ERA5 (European Centre for Medium-Range Weather Forecasts/ERA5) reanalyzed soil temperature, volumetric soil water and air temperature data, the temporal and spatial trends of the start date of soil freezing, the start date of soil thawing and the duration of the soil freezing and their relationships with the air temperature and altitude were investigated by using linear regression, Mann-Kendall test, moving t test and correlation analysis.These results demonstrated that the spatial distribution of soil freeze-thaw process in the Qinghai-Xizang Plateau is characterized by a trend of delaying freeze, advancing thaw and shortening freeze from the northwest to the southeast.The soil freeze-thaw process varied significantly on the Qinghai-Xizang Plateau from 1979 to 2018.The start date of soil freezing was delayed by 14.0 days with a rate of 0.17 d·a-1, and the start date of soil thawing was advanced by 11.0 days with a rate of 0.07 d·a-1, and the duration of the soil freeze was shortened by 25.0 days with a rate of 0.23 d·a-1 over the past 40 years.The overall trend of soil freeze-thaw process is the same in the Qinghai-Xizang Plateau, while the local rate is different.Throughout the period of study, the duration of the soil freeze in the southern and the northern Changtang Plateau is shortened by 47.2 days and 32.9 days.The first date of the soil freeze, the first date of the soil thaw and the duration of the soil freeze are significantly correlated with temperature and altitude.If the air temperature rises by 1.0 ℃, the first date of the soil freeze will be delayed by 5.2 days, and the first date of the soil thaw will be advanced by 4.5 days, so that the duration of the soil freeze will be shortened by 9.8 days.In the high cold Tibetan climatological zone, the first date of the soil freeze will be advanced by 9.1 days, and the first date of the soil thaw will be delayed by 4.9 days, while the duration of the soil freeze will be increased by 13.9 days as the altitude increases by 1000.0 m.
Wenhui LIU , Jun WEN , Jinlei CHEN , Zuoliang WANG , Xuancheng LU , Yueyue WU , Yuqin JIANG . Characteristic Analysis of the Spatio-temporal Distribution of Key Variables during the Soil Freeze-thaw Process over the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022 , 41(1) : 11 -23 . DOI: 10.7522/j.issn.1000-0534.2021.00024
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | |
null | 蔡林彤, 方雪薇, 吕世华, 等, 2021.青藏高原中部冻融强度变化及其与气温的关系[J].高原气象, 40(2): 244-256.DOI: 10. 7522/j.issn.1000-0534.2020.00073. |
null | 陈渤黎, 罗斯琼, 吕世华, 等, 2017.基于CLM模式的青藏高原土壤冻融过程陆面特征研究[J].冰川冻土, 39(4): 760-770. |
null | 高荣, 韦志刚, 董文杰, 2003.青藏高原土壤冻结始日和终日的年际变化[J].冰川冻土, 1: 49-54. |
null | 李韧, 赵林, 丁永建, 等, 2012.青藏公路沿线多年冻土区活动层动态变化及区域差异特征[J].科学通报, 57(30): 2864-2871. |
null | 李述训, 南卓铜, 赵林, 2002a.冻融作用对地气系统能量交换的影响分析[J].冰川冻土, 24(5): 506-511. |
null | 李述训, 南卓铜, 赵林, 2002b.冻融作用对系统与环境间能量交换的影响[J].冰川冻土, 24(2): 109-115. |
null | 李卫朋, 范继辉, 沙玉坤, 等, 2014.藏北高寒草原土壤温度变化与冻融特征[J].山地学报, 32(4): 407-416. |
null | 刘明浩, 孙志忠, 牛富俊, 等, 2014.气候变化背景下青藏铁路沿线多年冻土变化特征研究[J].冰川冻土, 36(5): 1122-1130. |
null | 刘双, 谢正辉, 高骏强, 等, 2018.高寒生态脆弱区冻土碳水循环对气候变化的响应——以甘南州为例[J].高原气象, 37(5): 1177-1187.DOI: 10.7522/j.issn.1000-0534.2018.00016. |
null | 刘源, 秦军, 阳坤, 等, 2018.3种土壤冻融判别算法在青藏高原的分类精度评价[J].地球信息科学学报, 20(8): 1178-1189. |
null | 罗斯琼, 张宇, 吕世华, 2008.黄土高原砂壤土冻融过程的观测和模拟[J].冰川冻土, 30(2): 234-243. |
null | 吕少宁, 李栋梁, 文军, 等, 2010.全球变暖背景下青藏高原气温周期变化与突变分析[J].高原气象, 29(6): 1378-1385. |
null | 朴世龙, 张宪洲, 汪涛, 等, 2019.青藏高原生态系统对气候变化的响应及其反馈[J].科学通报, 64(27): 2842-2855. |
null | 丘宝剑, 1989.国家农业地图集[M].北京: 中国地图出版社, 20-21. |
null | 邱国庆, 程国栋, 1995.中国的多年冻土──过去与现在[J].第四纪研究, 15(1): 13-22. |
null | 冉洪伍, 范继辉, 黄菁, 2019.藏北高寒草地土壤冻融过程水热变化特征[J].草业科学, 36(4): 980-995. |
null | 王澄海, 董文杰, 韦志刚, 2003.青藏高原季节冻融过程与东亚大气环流关系的研究[J].地球物理学报, 46(3): 309-316. |
null | 魏莹, 段克勤, 2020.1980-2016年青藏高原变暖时空特征及其可能影响原因[J].高原气象, 39(3): 459-466.DOI: 10.7522/j.issn.1000-0534.2019.00121. |
null | 吴青柏, 董献付, 刘永智, 2005.青藏公路沿线多年冻土对气候变化和工程影响的响应分析[J].冰川冻土, 27(1): 50-54. |
null | 徐洪亮, 常娟, 郭林茂, 等, 2021.青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J].高原气象, 40(2): 229-243.DOI: 10.7522/j.issn.1000-0534.2020.00071. |
null | 许建伟, 高艳红, 彭保发, 等, 2020.1979-2016年青藏高原降水的变化特征及成因分析[J].高原气象, 39(2): 234-244.DOI: 10.7522/j.issn.1000-0534.2019.00029. |
null | 阳勇, 陈仁升, 2011.冻土水文研究进展[J].地球科学进展, 26(7): 711-723. |
null | 杨梅学, 姚檀栋, 何元庆, 2002.青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J].山地学报, 20(5): 553-558. |
null | 杨淑华, 吴通华, 李韧, 等, 2018.青藏高原近地表土壤冻融状况的时空变化特征[J].高原气象, 37(1): 43-53.DOI: 10.7522/j.issn.1000-0534.2017.00043. |
null | 姚檀栋, 2008.青藏高原及毗邻地区冰川湖泊图[M].西安: 西安地图出版社. |
null | 姚檀栋, 姚治君, 2010.青藏高原冰川退缩对河水径流的影响[J].自然杂志, 32(1): 4-8. |
null | 张廷军, 晋锐, 高峰, 2009.冻土遥感研究进展: 被动微波遥感[J].地球科学进展, 24(10): 1073-1083. |
null | 郑度, 张荣祖, 杨勤业, 1979.试论青藏高原的自然地带[J].地理学报, 34(1): 1-11. |
null | 周余华, 叶伯生, 胡和平, 2005.土壤冻融条件下的陆面过程研究综述[J].水科学进展, 16(6): 887-891. |
/
〈 |
|
〉 |